
1Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Programming with OpenGL
Part 2: Complete Programs

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Objectives

•Refine the first program
- Alter the default values
- Introduce a standard program structure

•Simple viewing
- Two-dimensional viewing as a special case of

three-dimensional viewing

•Fundamental OpenGL primitives
•Attributes

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Program Structure

• Most OpenGL programs have a similar
structure that consists of the following functions
-main():

• defines the callback functions
• opens one or more windows with the required properties
• enters event loop (last executable statement)

-init(): sets the state variables
• Viewing
• Attributes

- callbacks
• Display function
• Input and window functions

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

simple.c revisited

• In this version, we shall see the same
output but we have defined all the
relevant state values through function
calls using the default values

• In particular, we set
- Colors
- Viewing conditions
- Window properties

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

main.c

#include <GL/glut.h>

int main(int argc, char** argv)
{
glutInit(&argc,argv);
glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);
glutInitWindowSize(500,500);
glutInitWindowPosition(0,0);
glutCreateWindow("simple");
glutDisplayFunc(mydisplay);

init();

glutMainLoop();
}

includes gl.h

define window properties

set OpenGL state

enter event loop

display callback

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

GLUT functions

•glutInit allows application to get command line
arguments and initializes system

•gluInitDisplayMode requests properties for the
window (the rendering context)

- RGB color
- Single buffering
- Properties logically ORed together

•glutWindowSize in pixels
•glutWindowPosition from top-left corner of display
•glutCreateWindow create window with title “simple”
•glutDisplayFunc display callback
•glutMainLoop enter infinite event loop

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

init.c

void init()
{
glClearColor (0.0, 0.0, 0.0, 1.0);

glColor3f(1.0, 1.0, 1.0);

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

}

black clear color
opaque window

fill/draw with white

viewing volume

8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Coordinate Systems

• The units in glVertex are determined by the
application and are called object or problem
coordinates

• The viewing specifications are also in object
coordinates and it is the size of the viewing
volume that determines what will appear in the
image

• Internally, OpenGL will convert to camera (eye)
coordinates and later to screen coordinates

• OpenGL also uses some internal representations
that usually are not visible to the application

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL Camera

•OpenGL places a camera at the origin in
object space pointing in the negative z
direction

•The default viewing volume
 is a box centered at the
 origin with a side of
 length 2

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Orthographic Viewing

z=0

z=0

In the default orthographic view, points are
projected forward along the z axis onto the
plane z=0

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Transformations and Viewing

• In OpenGL, projection is carried out by a
projection matrix (transformation)

• There is only one set of transformation
functions so we must set the matrix mode first

 glMatrixMode (GL_PROJECTION)

• Transformation functions are incremental so
we start with an identity matrix and alter it with a
projection matrix that gives the view volume

 glLoadIdentity();
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Two- and three-
dimensional viewing

• In glOrtho(left, right, bottom, top,
near, far) the near and far distances are
measured from the camera

• Two-dimensional vertex commands place all vertices
in the plane z=0

• If the application is in two dimensions, we can use
the function
 gluOrtho2D(left, right,bottom,top)

• In two dimensions, the view or clipping volume
becomes a clipping window

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

mydisplay.c

void mydisplay()
{
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_POLYGON);

glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2f(0.5, 0.5);
glVertex2f(0.5, -0.5);

glEnd();
glFlush();

}

14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL Primitives

GL_QUAD_STRIPGL_QUAD_STRIP

GL_POLYGONGL_POLYGON

GL_TRIANGLE_STRIPGL_TRIANGLE_STRIP GL_TRIANGLE_FANGL_TRIANGLE_FAN

GL_POINTSGL_POINTS

GL_LINESGL_LINES

GL_LINE_LOOPGL_LINE_LOOP

GL_LINE_STRIPGL_LINE_STRIP

GL_TRIANGLESGL_TRIANGLES

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Polygon Issues

• OpenGL will only display polygons correctly that are
- Simple: edges cannot cross
- Convex: All points on line segment between two points in a

polygon are also in the polygon
- Flat: all vertices are in the same plane

• User program can check if above true
- OpenGL will produce output if these conditions are violated

but it may not be what is desired

• Triangles satisfy all conditions

nonsimple polygon nonconvex polygon

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Attributes

•Attributes are part of the OpenGL state
and determine the appearance of objects

- Color (points, lines, polygons)
- Size and width (points, lines)
- Stipple pattern (lines, polygons)
- Polygon mode

• Display as filled: solid color or stipple pattern
• Display edges
• Display vertices

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

RGB color

• Each color component is stored separately in
the frame buffer

• Usually 8 bits per component in buffer
• Note in glColor3f the color values range from

0.0 (none) to 1.0 (all), whereas in glColor3ub
the values range from 0 to 255

18Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Indexed Color

•Colors are indices into tables of RGB values
•Requires less memory

- indices usually 8 bits
- not as important now

• Memory inexpensive
• Need more colors for shading

19Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Color and State

• The color as set by glColor becomes part of
the state and will be used until changed

- Colors and other attributes are not part of the
object but are assigned when the object is
rendered

• We can create conceptual vertex colors by code
such as

 glColor
 glVertex
 glColor
 glVertex

20Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Smooth Color

• Default is smooth shading
- OpenGL interpolates vertex colors across

visible polygons
• Alternative is flat shading

- Color of first vertex
determines fill color

•glShadeModel
(GL_SMOOTH)
or GL_FLAT

21Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Viewports

•Do not have use the entire window for the
image: glViewport(x,y,w,h)

•Values in pixels (screen coordinates)

