

The University of New Mexico

Geometry

Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Objectives

- Introduce the elements of geometry
 - Scalars
 - Vectors
 - Points
- Develop mathematical operations among them in a coordinate-free manner
- Define basic primitives
 - Line segments
 - Polygons

Basic Elements

- Geometry is the study of the relationships among objects in an n-dimensional space
 - In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements
 - Scalars
 - Vectors
 - Points

- When we learned simple geometry, most of us started with a Cartesian approach
 - Points were at locations in space $\mathbf{p}=(x,y,z)$
 - We derived results by algebraic manipulations involving these coordinates
- This approach was nonphysical
 - Physically, points exist regardless of the location of an arbitrary coordinate system
 - Most geometric results are independent of the coordinate system
 - Example Euclidean geometry: two triangles are identical if two corresponding sides and the angle between them are identical

- Need three basic elements in geometry
 - Scalars, Vectors, Points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)
- Examples include the real and complex number systems under the ordinary rules with which we are familiar
- Scalars alone have no geometric properties

- Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics
 - Can map to other types

Vector Operations

- Every vector has an inverse
 - Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector
 - Zero magnitude, undefined orientation
- The sum of any two vectors is a vector
 - Use head-to-tail axiom

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
 - Scalar-vector multiplication $u = \alpha v$
 - Vector-vector addition: w = u + v
- Expressions such as

v = u + 2w - 3r

Make sense in a vector space

- These vectors are identical
 - Same length and magnitude

Vectors spaces insufficient for geometry
Need points

Points

- Location in space
- Operations allowed between points and vectors
 - Point-point subtraction yields a vector
 - Equivalent to point-vector addition

- Point + a vector space
- Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Point-vector addition
 - Scalar-scalar operations
- For any point define
 - $-1 \bullet \mathbf{P} = \mathbf{P}$
 - $0 \bullet P = 0$ (zero vector)

- Consider all points of the form
 - $P(\alpha) = P_0 + \alpha d$
 - Set of all points that pass through P₀ in the direction of the vector **d**

Parametric Form

- This form is known as the parametric form of the line
 - More robust and general than other forms
 - Extends to curves and surfaces
- Two-dimensional forms
 - Explicit: y = mx + h
 - Implicit: ax + by + c = 0
 - Parametric:

$$\begin{aligned} \mathbf{x}(\alpha) &= \alpha \mathbf{x}_0 + (1 - \alpha) \mathbf{x}_1 \\ \mathbf{y}(\alpha) &= \alpha \mathbf{y}_0 + (1 - \alpha) \mathbf{y}_1 \end{aligned}$$

• If $\alpha \ge 0$, then $P(\alpha)$ is the ray leaving P_0 in the direction d If we use two points to define v, then $P(\alpha) = Q + \alpha (R-Q) = Q + \alpha V$ $\alpha = 1 \cdot P(\alpha)$ $=\alpha R + (1-\alpha)Q$ For $0 \le \alpha \le 1$ we get all the points on the *line segment* $\alpha = 0$ joining R and Q

 An object is *convex* iff for any two points in the object all points on the line segment between these points are also in the object

The University of New Mexico

• Consider the "sum" $P{=}\alpha_1P_1{+}\alpha_2P_2{+}....{+}\alpha_nP_n$ Can show by induction that this sum makes sense iff

$$\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$$

- in which case we have the *affine sum* of the points P_1, P_2, \dots, P_n
- If, in addition, $\alpha_i \ge 0$, we have the *convex hull* of P_1, P_2, \dots, P_n

Convex Hull

- Smallest convex object containing P₁, P₂,....P_n
- Formed by "shrink wrapping" points

Curves and Surfaces

- Curves are one parameter entities of the form $P(\alpha)$ where the function is nonlinear
- Surfaces are formed from two-parameter functions $P(\alpha,\beta)$
 - Linear functions give planes and polygons

 A plane can be defined by a point and two vectors or by three points Ρ \mathbf{V} R R u $P(\alpha,\beta)=R+\alpha(Q-R)+\beta(P-Q)$ $P(\alpha,\beta)=R+\alpha u+\beta v$

The University of New Mexico

Triangles

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Normals

- Every plane has a vector n normal (perpendicular, orthogonal) to it
- From point-two vector form $P(\alpha,\beta)=R+\alpha u+\beta v$, we know we can use the cross product to find $n = u \times v$ and the equivalent form $(P(\alpha)-P) \cdot n=0$

Ρ

