Geometry

Ed Angel
 Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Objectives

- Introduce the elements of geometry
- Scalars
- Vectors
- Points
- Develop mathematical operations among them in a coordinate-free manner
- Define basic primitives
- Line segments
- Polygons

Basic Elements

- Geometry is the study of the relationships among objects in an n-dimensional space
- In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements
- Scalars
- Vectors
- Points
- When we learned simple geometry, most of us started with a Cartesian approach
- Points were at locations in space $p=(x, y, z)$
- We derived results by algebraic manipulations involving these coordinates
- This approach was nonphysical
- Physically, points exist regardless of the location of an arbitrary coordinate system
- Most geometric results are independent of the coordinate system
- Example Euclidean geometry: two triangles are identical if two corresponding sides and the angle between them are identical

Scalars

- Need three basic elements in geometry
- Scalars, Vectors, Points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)
- Examples include the real and complex number systems under the ordinary rules with which we are familiar
- Scalars alone have no geometric properties

Vectors

- Physical definition: a vector is a quantity with two attributes
- Direction
- Magnitude
- Examples include
- Force
- Velocity
- Directed line segments
- Most important example for graphics
- Can map to other types

Vector Operations

- Every vector has an inverse
- Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector
- Zero magnitude, undefined orientation
- The sum of any two vectors is a vector
- Use head-to-tail axiom

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
- Scalar-vector multiplication $u=\alpha v$
- Vector-vector addition: $w=u+v$
- Expressions such as

$$
v=u+2 w-3 r
$$

Make sense in a vector space

Vectors Lack Position

- These vectors are identical
- Same length and magnitude
- Vectors spaces insufficient for geometry
- Need points

Points

- Location in space
- Operations allowed between points and vectors
- Point-point subtraction yields a vector
- Equivalent to point-vector addition

$$
\begin{aligned}
& v=\mathrm{P}-\mathrm{Q} \\
& \mathrm{P}=v+\mathrm{Q}
\end{aligned}
$$

Affine Spaces

- Point + a vector space
- Operations
- Vector-vector addition
- Scalar-vector multiplication
- Point-vector addition
- Scalar-scalar operations
-For any point define
$-1 \cdot \mathrm{P}=\mathrm{P}$
$-0 \cdot \mathrm{P}=\mathbf{0}$ (zero vector)

Lines

- Consider all points of the form
$-\mathrm{P}(\alpha)=\mathrm{P}_{0}+\alpha \mathbf{d}$
- Set of all points that pass through P_{0} in the direction of the vector \mathbf{d}

Parametric Form

- This form is known as the parametric form of the line
- More robust and general than other forms
- Extends to curves and surfaces
-Two-dimensional forms
- Explicit: $y=m x+h$
- Implicit: $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
- Parametric:

$$
\begin{aligned}
& \mathrm{x}(\alpha)=\alpha \mathrm{x}_{0}+(1-\alpha) \mathrm{x}_{1} \\
& \mathrm{y}(\alpha)=\alpha \mathrm{y}_{0}+(1-\alpha) \mathrm{y}_{1}
\end{aligned}
$$

Rays and Line Segments

- If $\alpha>=0$, then $\mathrm{P}(\alpha)$ is the ray leaving P_{0} in the direction d
If we use two points to define v, then
$P(\alpha)=Q+\alpha(R-Q)=Q+\alpha v$
$=\alpha \mathrm{R}+(1-\alpha) \mathrm{Q}$
For $0<=\alpha<=1$ we get all the points on the line segment joining R and Q

Convexity

- An object is convex iff for any two points in the object all points on the line segment between these points are also in the object

convex

Affine Sums

- Consider the "sum"
$\mathrm{P}=\alpha_{1} \mathrm{P}_{1}+\alpha_{2} \mathrm{P}_{2}+\ldots . .+\alpha_{\mathrm{n}} \mathrm{P}_{\mathrm{n}}$
Can show by induction that this sum makes sense iff

$$
\alpha_{1}+\alpha_{2}+\ldots . \alpha_{n}=1
$$

in which case we have the affine sum of the points $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots . . \mathrm{P}_{\mathrm{n}}$

- If, in addition, $\alpha_{i}>=0$, we have the convex hull of $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots . . \mathrm{P}_{\mathrm{n}}$

Convex Hull

The University of New Mexico

- Smallest convex object containing $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots . . \mathrm{P}_{\mathrm{n}}$
-Formed by "shrink wrapping" points

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Curves and Surfaces

- Curves are one parameter entities of the form $P(\alpha)$ where the function is nonlinear
- Surfaces are formed from two-parameter functions $\mathrm{P}(\alpha, \beta)$
- Linear functions give planes and polygons

Planes

- A plane can be defined by a point and two vectors or by three points

$\mathrm{P}(\alpha, \beta)=\mathrm{R}+\alpha \mathrm{u}+\beta \mathrm{v}$
$\mathrm{P}(\alpha, \beta)=\mathrm{R}+\alpha(\mathrm{Q}-\mathrm{R})+\beta(\mathrm{P}-\mathrm{Q})$

Triangles

for $0<=\alpha, \beta<=1$, we get all points in triangle

Normals

- Every plane has a vector n normal (perpendicular, orthogonal) to it
- From point-two vector form $P(\alpha, \beta)=R+\alpha u+\beta v$, we know we can use the cross product to find
$=u \times v$ and the equivalent form

$$
(P(\alpha)-P) \cdot n=0
$$

