Representation

Ed Angel
 Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Objectives

- Introduce concepts such as dimension and basis
- Introduce coordinate systems for representing vectors spaces and frames for representing affine spaces
- Discuss change of frames and bases
- Introduce homogeneous coordinates

Linear Independence

- A set of vectors $v_{1}, v_{2}, \ldots, v_{\mathrm{n}}$ is linearly independent if

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+. . \alpha_{n} v_{n}=0 \text { iff } \alpha_{1}=\alpha_{2}=\ldots=0
$$

- If a set of vectors is linearly independent, we cannot represent one in terms of the others
- If a set of vectors is linearly dependent, as least one can be written in terms of the others

Dimension

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the dimension of the space
- In an n-dimensional space, any set of n linearly independent vectors form a basis for the space
- Given a basis $v_{1}, v_{2}, \ldots, v_{\mathrm{n}}$, any vector v can be written as

$$
v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{\mathrm{n}} v_{\mathrm{n}}
$$

where the $\left\{\alpha_{i}\right\}$ are unique

Representation

- Until now we have been able to work with geometric entities without using any frame of reference, such as a coordinate system
- Need a frame of reference to relate points and objects to our physical world.
- For example, where is a point? Can't answer without a reference system
- World coordinates
- Camera coordinates

Coordinate Systems

- Consider a basis $v_{1}, v_{2}, \ldots, v_{\mathrm{n}}$
- A vector is written $v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{\mathrm{n}} v_{\mathrm{n}}$
- The list of scalars $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ is the representation of v with respect to the given basis
- We can write the representation as a row or column array of scalars

$$
\mathbf{a}=\left[\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{\mathrm{n}}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\cdot \\
\alpha_{\mathrm{n}}
\end{array}\right]
$$

Example

- $\mathrm{v}=2 \mathrm{v}_{1}+3 \mathrm{v}_{2}-4 \mathrm{v}_{3}$
$\cdot \mathbf{a}=\left[\begin{array}{lll}2 & 3 & -4\end{array}\right]^{\mathrm{T}}$
- Note that this representation is with respect to a particular basis
-For example, in OpenGL we start by representing vectors using the object basis but later the system needs a representation in terms of the camera or eye basis

Coordinate Systems

-Which is correct?

- Both are because vectors have no fixed location

Frames

- A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the origin, to the basis vectors to form a frame

"L"' Representation in a Frame

- Frame determined by $\left(\mathrm{P}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)$
-Within this frame, every vector can be written as

$$
v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}
$$

- Every point can be written as

$$
\mathrm{P}=\mathrm{P}_{0}+\beta_{1} v_{1}+\beta_{2} v_{2}+\beta_{3} v_{3}
$$

Confusing Points and Vectors

Consider the point and the vector

$$
\begin{aligned}
& \mathrm{P}=\mathrm{P}_{0}+\beta_{1} v_{1}+\beta_{2} v_{2}+\beta_{3} v_{3} \\
& v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}
\end{aligned}
$$

They appear to have the similar representations $\mathbf{p}=\left[\beta_{1} \beta_{2} \beta_{3}\right] \quad \mathbf{v}=\left[\alpha_{1} \alpha_{2} \alpha_{3}\right]$
which confuses the point with the vector
A vector has no position
Vector can be placed anywhere

A Single Representation

If we define $0 \cdot \mathrm{P}=\mathbf{0}$ and $1 \cdot \mathrm{P}=\mathrm{P}$ then we can write
$\mathrm{v}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=\left[\alpha_{1} \alpha_{2} \alpha_{3} 0\right]\left[\begin{array}{lll}v_{1} & v_{2} & v_{3} \\ \mathrm{P}_{0}\end{array}\right]^{\mathrm{T}}$
$\mathrm{P}=\mathrm{P}_{0}+\beta_{1} v_{1}+\beta_{2} v_{2}+\beta_{3} v_{3}=\left[\beta_{1} \beta_{2} \beta_{3} 1\right]\left[v_{1} v_{2} v_{3} \mathrm{P}_{0}\right]^{\mathrm{T}}$
Thus we obtain the four-dimensional
homogeneous coordinate representation

$$
\begin{aligned}
& \mathbf{v}=\left[\begin{array}{lll}
\alpha_{1} \alpha_{2} & \alpha_{3} & 0
\end{array}\right]^{\mathrm{T}} \\
& \mathbf{p}=\left[\beta_{1} \beta_{2} \beta_{3} 1\right]^{\mathrm{T}}
\end{aligned}
$$

"'L"' Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional point $[x y z]$ is given as
$\mathbf{p}=\left[x^{\prime} y^{\prime} z^{\prime} w\right]^{\mathrm{T}}=\left[\begin{array}{ll} \\ x & w y \\ w z w\end{array}\right]^{\mathrm{T}}$
We return to a three dimensional point (for $\mathrm{w} \neq 0$) by
$\mathrm{x} \leftarrow \mathrm{x}^{\prime} / \mathrm{w}$
$\mathrm{y} \leftarrow \mathrm{y}^{\prime} / \mathrm{w}$
$\mathrm{z} \leftarrow \mathrm{z}^{\prime} / \mathrm{w}$
If $\mathrm{w}=0$, the representation is that of a vector
Note that homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions
For $w=1$, the representation of a point is $[x y z 1]$

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
- All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4×4 matrices
- Hardware pipeline works with 4 dimensional representations
- For orthographic viewing, we can maintain w=0 for vectors and w=1 for points
- For perspective we need a perspective division

Change of Coordinate

 Systems-Consider two representations of a the same vector with respect to two different bases. The representations are

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3}
\end{array}\right] \\
& \mathbf{b}=\left[\begin{array}{lll}
\beta_{1} & \beta_{2} & \beta_{3}
\end{array}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{v}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}=\left[\alpha_{1} \alpha_{2} \alpha_{3}\right]\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]^{\mathrm{T}} \\
& =\beta_{1} u_{1}+\beta_{2} u_{2}+\beta_{3} u_{3}=\left[\beta_{1} \beta_{2} \beta_{3}\right]\left[u_{1} u_{2} u_{3}\right]^{\mathrm{T}}
\end{aligned}
$$

Representing second basis in terms of first

Each of the basis vectors, $\mathrm{u} 1, \mathrm{u} 2, \mathrm{u} 3$, are vectors that can be represented in terms of the first basis

$$
\begin{aligned}
& \mathrm{u}_{1}=\gamma_{11} \mathrm{v}_{1}+\gamma_{12} \mathrm{v}_{2}+\gamma_{13} \mathrm{v}_{3} \\
& \mathrm{u}_{2}=\gamma_{21} \mathrm{v}_{1}+\gamma_{22} \mathrm{v}_{2}+\gamma_{23} \mathrm{v}_{3} \\
& \mathrm{u}_{3}=\gamma_{31} \mathrm{v}_{1}+\gamma_{32} \mathrm{v}_{2}+\gamma_{33} \mathrm{v}_{3}
\end{aligned}
$$

Matrix Form

The coefficients define a 3×3 matrix

$$
\mathbf{M}=\left[\begin{array}{lll}
\gamma_{11} & \gamma_{12} & \gamma_{13} \\
\gamma_{21} & \gamma_{22} & \gamma_{23} \\
\gamma_{31} & \gamma_{32} & \gamma_{33}
\end{array}\right]
$$

and the bases can be related by

$$
\mathbf{a}=\mathbf{M}^{\mathrm{T}} \mathbf{b}
$$

see text for numerical examples

Change of Frames

- We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two frames:
($\mathrm{P}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$)
$\left(\mathrm{Q}_{0}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$

- Any point or vector can be represented in either frame
- We can represent $\mathrm{Q}_{0}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}$ in terms of $\mathrm{P}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$

Representing One Frame in Terms of the Other

Extending what we did with change of bases

$$
\begin{aligned}
& u_{1}=\gamma_{11} v_{1}+\gamma_{12} v_{2}+\gamma_{13} v_{3} \\
& u_{2}=\gamma_{21} v_{1}+\gamma_{22} v_{2}+\gamma_{23} v_{3} \\
& u_{3}=\gamma_{31} v_{1}+\gamma_{32} v_{2}+\gamma_{33} v_{3} \\
& Q_{0}=\gamma_{41} v_{1}+\gamma_{42} v_{2}+\gamma_{43} v_{3}+P_{0}
\end{aligned}
$$

defining a 4×4 matrix

$$
\mathbf{M}=\left[\begin{array}{llll}
\gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\
\gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\
\gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\
\gamma_{41} & \gamma_{42} & \gamma_{43} & 1
\end{array}\right]
$$

"' Working with Representations

Within the two frames any point or vector has a representation of the same form
$\mathbf{a}=\left[\begin{array}{lll}\alpha_{1} & \alpha_{2} & \alpha_{3} \\ \alpha_{4}\end{array}\right]$ in the first frame
$\mathbf{b}=\left[\beta_{1} \beta_{2} \beta_{3} \beta_{4}\right]$ in the second frame
where $\alpha_{4}=\beta_{4}=1$ for points and $\alpha_{4}=\beta_{4}=0$ for vectors and

$$
\mathbf{a}=\mathbf{M}^{\mathrm{T}} \mathbf{b}
$$

The matrix \mathbf{M} is 4×4 and specifies an affine transformation in homogeneous coordinates
"I'" Affine Transformations

- Every linear transformation is equivalent to a change in frames
- Every affine transformation preserves lines
- However, an affine transformation has only 12 degrees of freedom because 4 of the elements in the matrix are fixed and are a subset of all possible 4×4 linear transformations

The World and Camera

Frames

-When we work with representations, we work with n-tuples or arrays of scalars

- Changes in frame are then defined by 4×4 matrices
- In OpenGL, the base frame that we start with is the world frame
- Eventually we represent entities in the camera frame by changing the world representation using the model-view matrix
- Initially these frames are the same ($\mathbf{M}=\mathbf{I}$)

Moving the Camera

If objects are on both sides of $z=0$, we must move camera frame
$\mathbf{M}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -\mathrm{d} \\ 0 & 0 & 0 & 1\end{array}\right]$

(a)

(b)

