

The University of New Mexico

Transformations

Ed Angel

Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

- Introduce standard transformations
 - Rotation
 - Translation
 - Scaling
 - Shear
- Derive homogeneous coordinate transformation matrices
- Learn to build arbitrary transformation matrices from simple transformations

A transformation maps points to other points and/or vectors to other vectors

Affine Transformations

- Line preserving
- Characteristic of many physically important transformations
 - Rigid body transformations: rotation, translation
 - Scaling, shear
- Importance in graphics is that we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints

Notation

- We will be working with both coordinate-free representations of transformations and representations within a particular frame
- P,Q, R: points in an affine space
- u, v, w: vectors in an affine space
- α , β , γ : scalars
- p, q, r: representations of points
- -array of 4 scalars in homogeneous coordinates
- u, v, w: representations of points-array of 4 scalars in homogeneous coordinates

Translation

The University of New Mexico

• Move (translate, displace) a point to a new location

- Displacement determined by a vector d
 - Three degrees of freedom
 - P'=P+d

How many ways?

Although we can move a point to a new location in infinite ways, when we move many points there is usually only one way

Translation Using Representations

Using the homogeneous coordinate representation in some frame $\mathbf{p} = [\mathbf{x} \mathbf{y} \mathbf{z} \mathbf{1}]^{\mathrm{T}}$ $p' = [x' y' z' 1]^T$ $\mathbf{d} = [\mathrm{dx} \mathrm{dy} \mathrm{dz} 0]^{\mathrm{T}}$ Hence $\mathbf{p'} = \mathbf{p} + \mathbf{d}$ or $x'=x+d_x$ note that this expression is in four dimensions and expresses y'=y+d_y point = vector + point $z'=z+d_z$

Translation Matrix

We can also express translation using a 4 x 4 matrix T in homogeneous coordinates p'=Tp where

$$\mathbf{T} = \mathbf{T}(d_x, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

Rotation (2D)

- Rotation about z axis in three dimensions leaves all points with the same z
 - Equivalent to rotation in two dimensions in planes of constant \boldsymbol{z}

x'=x $\cos \theta$ -y $\sin \theta$ y' = x $\sin \theta$ + y $\cos \theta$ z' =z

- or in homogeneous coordinates $p'=R_{Z}(\theta)p$

Rotation Matrix

The University of New Mexico

$$\mathbf{R} = \mathbf{R}_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Same argument as for rotation about *z* axis
 - For rotation about *x* axis, *x* is unchanged
 - For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{R} = \mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Expand or contract along each axis (fixed point of origin)

The University of New Mexico

Inverses

- Although we could compute inverse matrices by general formulas, we can use simple geometric observations
 - Translation: $T^{-1}(d_x, d_y, d_z) = T(-d_x, -d_y, -d_z)$
 - Rotation: $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$
 - Holds for any rotation matrix
 - Note that since $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$ **R** $^{-1}(\theta) = \mathbf{R}^{T}(\theta)$
 - Scaling: S⁻¹(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)

Concatenation

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Because the same transformation is applied to many vertices, the cost of forming a matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p
- The difficult part is how to form a desired transformation from the specifications in the application

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent

 $\mathbf{p'} = \mathbf{ABCp} = \mathbf{A}(\mathbf{B}(\mathbf{Cp}))$

 Note many references use column matrices to represent points. In terms of column matrices

 $\mathbf{p}^{\mathsf{T}} = \mathbf{p}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}}$

General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the *x*, *y*, and *z* axes

 $\mathbf{R}(\theta) = \mathbf{R}_{z}(\theta_{z}) \mathbf{R}_{y}(\theta_{y}) \mathbf{R}_{x}(\theta_{x})$

 $\theta_{x} \theta_{y} \theta_{z}$ are called the Euler angles

Note that rotations do not commute We can use rotations in another order but with different angles z

Move fixed point to origin Rotate Move fixed point back $\mathbf{M} = \mathbf{T}(p_f) \mathbf{R}(\theta) \mathbf{T}(-p_f)$

Instancing

- In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size
- We apply an *instance transformation* to its vertices to

- Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions

Shear Matrix

Consider simple shear along *x* axis

