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Objectives

• Introduce simple data structures for
building polygonal models

- Vertex lists
- Edge lists

•OpenGL vertex arrays
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Representing a Mesh

• Consider a mesh

• There are 8 nodes and 12 edges
- 5 interior polygons
- 6 interior (shared) edges

• Each vertex has a location vi = (xi yi zi)
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Simple Representation

• Define each polygon by the geometric locations of its
vertices

• Leads to OpenGL code such as

• Inefficient and unstructured
- Consider moving a vertex to a new location
- Must search for all occurrences

glBegin(GL_POLYGON);
    glVertex3f(x1, x1, x1);
    glVertex3f(x6, y6, z6);
       glVertex3f(x8, y8, z8);
    glVertex3f(x7, y7, z7);
glEnd();
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Inward and Outward
Facing Polygons

• The order {v1, v6, v8 , v7} and {v6, v8 , v7, v1} are
equivalent in that the same polygon will be rendered
by OpenGL but the order {v1, v7, v8 , v6} is different

• The first two describe outwardly
facing polygons
• Use the right-hand rule =
counter-clockwise encirclement
of outward-pointing normal
• OpenGL can treat inward and
outward facing polygons differently
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Geometry vs Topology

•Generally it is a good idea to look for data
structures that separate the geometry
from the topology

- Geometry: locations of the vertices
- Topology: organization of the vertices and

edges
- Example: a polygon is an ordered list of vertices

with an edge connecting successive pairs of
vertices and the last to the first

- Topology holds even if geometry changes
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Vertex Lists

• Put the geometry in an array
• Use pointers from the vertices into this array
• Introduce a polygon list
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Shared Edges

• Vertex lists will draw filled polygons correctly but
if we draw the polygon by its edges, shared
edges are drawn twice

• Can store mesh by edge list
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Edge List
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Modeling a Cube

GLfloat vertices[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},
{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0},

 {1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

GLfloat colors[][3] = {{0.0,0.0,0.0},{1.0,0.0,0.0},
{1.0,1.0,0.0}, {0.0,1.0,0.0}, {0.0,0.0,1.0},

 {1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}};

Model a color cube for rotating cube program

Define global arrays for vertices and colors
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Drawing a polygon from a
list of indices

Draw a quadrilateral from a list of indices into the
array vertices and use color corresponding to
first index

void polygon(int a, int b, int c
, int d)
{
   glBegin(GL_POLYGON);
      glColor3fv(colors[a]);
      glVertex3fv(vertices[a]);
      glVertex3fv(vertices[b]);
      glVertex3fv(vertices[c]);
      glVertex3fv(vertices[d]);
    glEnd();
 }
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Draw cube from faces

void colorcube( )
{
    polygon(0,3,2,1);
    polygon(2,3,7,6);
    polygon(0,4,7,3);
    polygon(1,2,6,5);
    polygon(4,5,6,7);
    polygon(0,1,5,4);
}
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Note that vertices are ordered so that 
we obtain correct outward facing normals
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Efficiency

•The weakness of our approach is that we
are building the model in the application
and must do many function calls to draw
the cube

•Drawing a cube by its faces in the most
straight forward way requires

- 6 glBegin, 6 glEnd
- 6 glColor
- 24 glVertex
- More if we use texture and lighting
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Vertex Arrays

• OpenGL provides a facility called vertex arrays
that allows us to store array data in the
implementation

• Six types of arrays supported
- Vertices
- Colors
- Color indices
- Normals
- Texture coordinates
- Edge flags

• We will need only colors and vertices
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Initialization

• Using the same color and vertex data, first we
enable
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

• Identify location of arrays
glVertexPointer(3, GL_FLOAT, 0, vertices);

glColorPointer(3, GL_FLOAT, 0, colors);

3d arrays stored as floats data contiguous
data array
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Mapping indices to faces

•Form an array of face indices

•Each successive four indices describe a
face of the cube

•Draw through glDrawElements which
replaces all glVertex and glColor calls in
the display callback

GLubyte cubeIndices[24] = {0,3,2,1,2,3,7,6
    0,4,7,3,1,2,6,5,4,5,6,7,0,1,5,4};
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Drawing the cube

• Method 1:

• Method 2:

for(i=0; i<6; i++) glDrawElements(GL_POLYGON, 4, 
      GL_UNSIGNED_BYTE, &cubeIndices[4*i]);

format of index data start of index data

what to draw number of indices

glDrawElements(GL_QUADS, 24, 
    GL_UNSIGNED_BYTE, cubeIndices);

Draws cube with 1 function call!!


