
1Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Building Models

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Objectives

• Introduce simple data structures for
building polygonal models

- Vertex lists
- Edge lists

•OpenGL vertex arrays

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Representing a Mesh

• Consider a mesh

• There are 8 nodes and 12 edges
- 5 interior polygons
- 6 interior (shared) edges

• Each vertex has a location vi = (xi yi zi)

v1 v2

v7

v6
v8

v5

v4

v3

e1
e8

e3

e2

e11

e6

e7
e10

e5

e4

e9

e12

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Simple Representation

• Define each polygon by the geometric locations of its
vertices

• Leads to OpenGL code such as

• Inefficient and unstructured
- Consider moving a vertex to a new location
- Must search for all occurrences

glBegin(GL_POLYGON);
 glVertex3f(x1, x1, x1);
 glVertex3f(x6, y6, z6);
 glVertex3f(x8, y8, z8);
 glVertex3f(x7, y7, z7);
glEnd();

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Inward and Outward
Facing Polygons

• The order {v1, v6, v8 , v7} and {v6, v8 , v7, v1} are
equivalent in that the same polygon will be rendered
by OpenGL but the order {v1, v7, v8 , v6} is different

• The first two describe outwardly
facing polygons
• Use the right-hand rule =
counter-clockwise encirclement
of outward-pointing normal
• OpenGL can treat inward and
outward facing polygons differently

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Geometry vs Topology

•Generally it is a good idea to look for data
structures that separate the geometry
from the topology

- Geometry: locations of the vertices
- Topology: organization of the vertices and

edges
- Example: a polygon is an ordered list of vertices

with an edge connecting successive pairs of
vertices and the last to the first

- Topology holds even if geometry changes

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Vertex Lists

• Put the geometry in an array
• Use pointers from the vertices into this array
• Introduce a polygon list

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5.
x6 y6 z6
x7 y7 z7
x8 y8 z8

P1
P2
P3
P4
P5

v1
v7
v8
v6

v8
v5
v6topology geometry

8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Shared Edges

• Vertex lists will draw filled polygons correctly but
if we draw the polygon by its edges, shared
edges are drawn twice

• Can store mesh by edge list

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Edge List

v1 v2

v7

v6
v8

v5

v3

e1
e8

e3

e2

e11

e6

e7
e10

e5

e4

e9

e12

e1
e2
e3
e4
e5
e6
e7
e8
e9

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5.
x6 y6 z6
x7 y7 z7
x8 y8 z8

v1
v6

Note polygons are
not represented

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Modeling a Cube

GLfloat vertices[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},
{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0},

 {1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

GLfloat colors[][3] = {{0.0,0.0,0.0},{1.0,0.0,0.0},
{1.0,1.0,0.0}, {0.0,1.0,0.0}, {0.0,0.0,1.0},

 {1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}};

Model a color cube for rotating cube program

Define global arrays for vertices and colors

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Drawing a polygon from a
list of indices

Draw a quadrilateral from a list of indices into the
array vertices and use color corresponding to
first index

void polygon(int a, int b, int c
, int d)
{
 glBegin(GL_POLYGON);
 glColor3fv(colors[a]);
 glVertex3fv(vertices[a]);
 glVertex3fv(vertices[b]);
 glVertex3fv(vertices[c]);
 glVertex3fv(vertices[d]);
 glEnd();
 }

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Draw cube from faces

void colorcube()
{
 polygon(0,3,2,1);
 polygon(2,3,7,6);
 polygon(0,4,7,3);
 polygon(1,2,6,5);
 polygon(4,5,6,7);
 polygon(0,1,5,4);
}

0

5 6

2

4 7

1

3
Note that vertices are ordered so that
we obtain correct outward facing normals

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Efficiency

•The weakness of our approach is that we
are building the model in the application
and must do many function calls to draw
the cube

•Drawing a cube by its faces in the most
straight forward way requires

- 6 glBegin, 6 glEnd
- 6 glColor
- 24 glVertex
- More if we use texture and lighting

14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Vertex Arrays

• OpenGL provides a facility called vertex arrays
that allows us to store array data in the
implementation

• Six types of arrays supported
- Vertices
- Colors
- Color indices
- Normals
- Texture coordinates
- Edge flags

• We will need only colors and vertices

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Initialization

• Using the same color and vertex data, first we
enable
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

• Identify location of arrays
glVertexPointer(3, GL_FLOAT, 0, vertices);

glColorPointer(3, GL_FLOAT, 0, colors);

3d arrays stored as floats data contiguous
data array

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Mapping indices to faces

•Form an array of face indices

•Each successive four indices describe a
face of the cube

•Draw through glDrawElements which
replaces all glVertex and glColor calls in
the display callback

GLubyte cubeIndices[24] = {0,3,2,1,2,3,7,6
 0,4,7,3,1,2,6,5,4,5,6,7,0,1,5,4};

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Drawing the cube

• Method 1:

• Method 2:

for(i=0; i<6; i++) glDrawElements(GL_POLYGON, 4,
 GL_UNSIGNED_BYTE, &cubeIndices[4*i]);

format of index data start of index data

what to draw number of indices

glDrawElements(GL_QUADS, 24,
 GL_UNSIGNED_BYTE, cubeIndices);

Draws cube with 1 function call!!

