

Computer Viewing

Ed Angel
Professor of Computer Science,
Electrical and Computer
Engineering, and Media Arts
University of New Mexico

Objectives

- Introduce the mathematics of projection
- Introduce OpenGL viewing functions
- Look at alternate viewing APIs

Computer Viewing

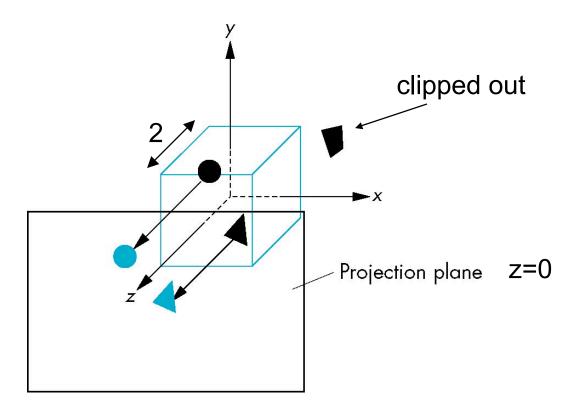
- There are three aspects of the viewing process, all of which are implemented in the pipeline,
 - Positioning the camera
 - Setting the model-view matrix
 - Selecting a lens
 - Setting the projection matrix
 - Clipping
 - Setting the view volume

The OpenGL Camera

- In OpenGL, initially the object and camera frames are the same
 - Default model-view matrix is an identity
- The camera is located at origin and points in the negative z direction
- OpenGL also specifies a default view volume that is a cube with sides of length 2 centered at the origin
 - Default projection matrix is an identity

Default Projection

Default projection is orthogonal



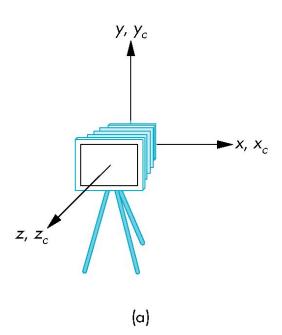
Moving the Camera Frame

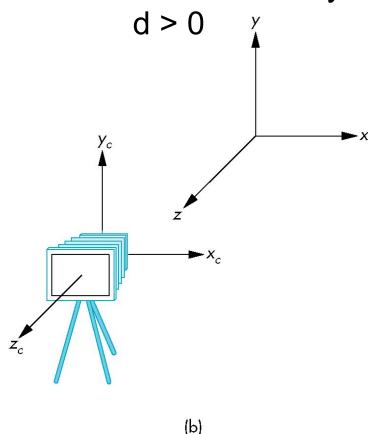
- If we want to visualize object with both positive and negative z values we can either
 - Move the camera in the positive z direction
 - Translate the camera frame
 - Move the objects in the negative z direction
 - Translate the world frame
- Both of these views are equivalent and are determined by the model-view matrix
 - Want a translation (glTranslatef(0.0,0.0,-d);)
 - -d > 0

Moving Camera back from Origin

frames after translation by -d

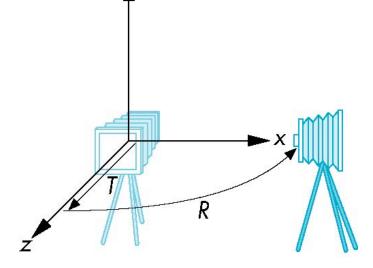
default frames





Moving the Camera

- We can move the camera to any desired position by a sequence of rotations and translations
- Example: side view
 - Rotate the camera
 - Move it away from origin
 - Model-view matrix C = TR



OpenGL code

 Remember that last transformation specified is first to be applied

```
glMatrixMode(GL_MODELVIEW)
glLoadIdentity();
glTranslatef(0.0, 0.0, -d);
glRotatef(90.0, 0.0, 1.0, 0.0);
```


The LookAt Function

- The GLU library contains the function gluLookAt to form the required modelview matrix through a simple interface
- Note the need for setting an up direction
- Still need to initialize
 - Can concatenate with modeling transformations
- Example: isometric view of cube aligned with axes

```
glMatrixMode(GL_MODELVIEW):
glLoadIdentity();
gluLookAt(1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0., 1.0. 0.0);
```


gluLookAt

gluLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz) (at_x, at_y, at_z) (up_x, up_y, up_z) -X(eye_x, eye_y, eye_z)

Other Viewing APIs

- The LookAt function is only one possible API for positioning the camera
- Others include
 - View reference point, view plane normal, view up (PHIGS, GKS-3D)
 - Yaw, pitch, roll
 - Elevation, azimuth, twist
 - Direction angles

Projections and Normalization

- The default projection in the eye (camera) frame is orthogonal
- For points within the default view volume

$$x_p = x$$
$$y_p = y$$
$$z_p = 0$$

- Most graphics systems use view normalization
 - All other views are converted to the default view by transformations that determine the projection matrix
 - Allows use of the same pipeline for all views

Homogeneous Coordinate Representation

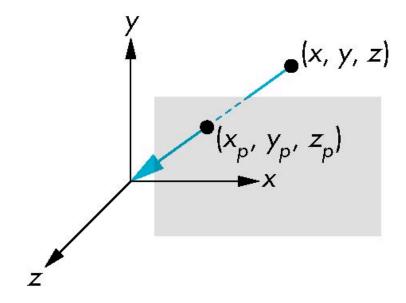
default orthographic projection

$$\begin{aligned} \mathbf{x}_p &= \mathbf{x} \\ \mathbf{y}_p &= \mathbf{y} \\ \mathbf{z}_p &= 0 \\ \mathbf{w}_p &= 1 \end{aligned} \qquad \mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

In practice, we can let M = I and set the z term to zero later

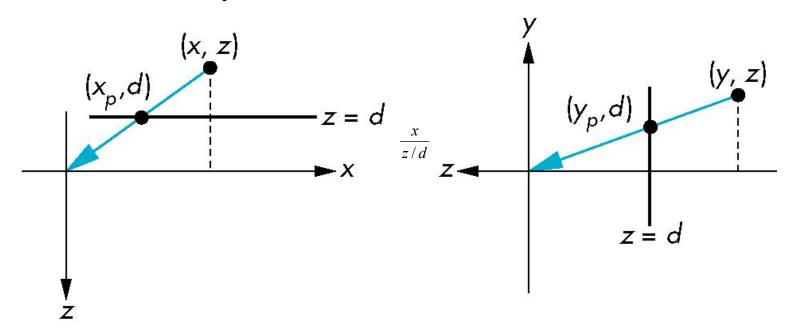
Simple Perspective

- Center of projection at the origin
- Projection plane z = d, d < 0



Perspective Equations

Consider top and side views



$$x_{\rm p} = \frac{x}{z/d}$$

$$y_{\rm p} = \frac{y}{z/d}$$

$$z_{\rm p} = d$$

16

Homogeneous Coordinate Form

consider
$$\mathbf{q} = \mathbf{Mp}$$
 where $\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$

$$\mathbf{q} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \Rightarrow \mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$

Perspective Division

- However $w \ne 1$, so we must divide by w to return from homogeneous coordinates
- This perspective division yields

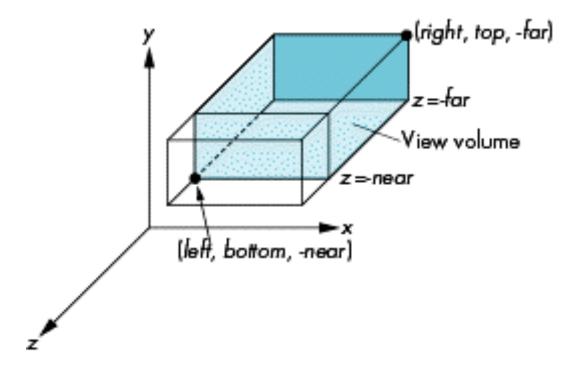
$$x_{\rm p} = \frac{x}{z/d}$$
 $y_{\rm p} = \frac{y}{z/d}$ $z_{\rm p} = d$

the desired perspective equations

 We will consider the corresponding clipping volume with the OpenGL functions

OpenGL Orthogonal Viewing

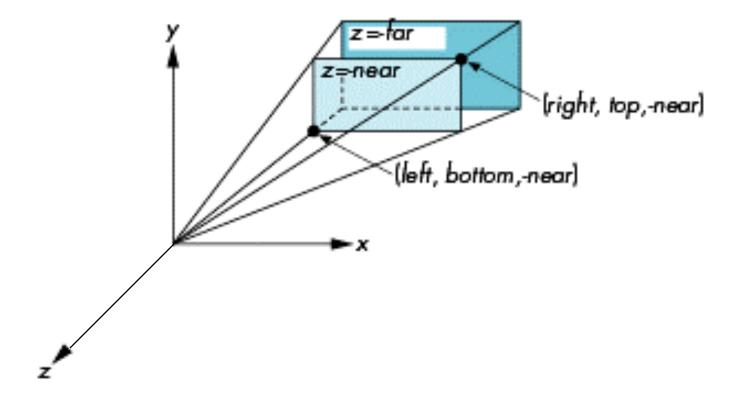
glOrtho(left,right,bottom,top,near,far)



near and far measured from camera

OpenGL Perspective

glFrustum(left,right,bottom,top,near,far)



Using Field of View

- With glfrustum it is often difficult to get the desired view
- gluPerpective(fovy, aspect, near, far)
 often provides a better interface

