Shading I

Ed Angel
 Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Objectives

- Learn to shade objects so their images appear three-dimensional
- Introduce the types of light-material interactions
- Build a simple reflection model---the Phong model--- that can be used with real time graphics hardware

Why we need shading

- Suppose we build a model of a sphere using many polygons and color it with glColor. We get something like
- But we want

Shading

- Why does the image of a real sphere look like
- Light-material interactions cause each point to have a different color or shade
- Need to consider
- Light sources
- Material properties
- Location of viewer
- Surface orientation

Scattering

- Light strikes A
- Some scattered
- Some absorbed
- Some of scattered light strikes B
- Some scattered
- Some absorbed
- Some of this scattered light strikes A and so on

Rendering Equation

- The infinite scattering and absorption of light can be described by the rendering equation
- Cannot be solved in general
- Ray tracing is a special case for perfectly reflecting surfaces
- Rendering equation is global and includes
- Shadows
- Multiple scattering from object to object

Global Effects

The University of New Mexico

"L"' Local vs Global Rendering

- Correct shading requires a global calculation involving all objects and light sources
- Incompatible with pipeline model which shades each polygon independently (local rendering)
- However, in computer graphics, especially real time graphics, we are happy if things "look right"
- Exist many techniques for approximating global effects

Light-Material Interaction

- Light that strikes an object is partially absorbed and partially scattered (reflected)
-The amount reflected determines the color and brightness of the object
- A surface appears red under white light because the red component of the light is reflected and the rest is absorbed
- The reflected light is scattered in a manner that depends on the smoothness and orientation of the surface

Light Sources

General light sources are difficult to work with because we must integrate light coming from all points on the source

Simple Light Sources

- Point source
- Model with position and color
- Distant source = infinite distance away (parallel)
- Spotlight
- Restrict light from ideal point source
- Ambient light
- Same amount of light everywhere in scene
- Can model contribution of many sources and reflecting surfaces

Surface Types

- The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflected the light
- A very rough surface scatters light in all directions

smooth surface

rough surface

Phong Model

- A simple model that can be computed rapidly
- Has three components
- Diffuse
- Specular
- Ambient
- Uses four vectors
- To source
- To viewer
- Normal
- Perfect reflector

Ideal Reflector

- Normal is determined by local orientation
- Angle of incidence = angle of relection
- The three vectors must be coplanar

$$
\mathbf{r}=2(\mathbf{l} \cdot \mathbf{n}) \mathbf{n}-\mathbf{l}
$$

Lambertian Surface

- Perfectly diffuse reflector
- Light scattered equally in all directions
- Amount of light reflected is proportional to the vertical component of incoming light
- reflected light $\sim \cos \theta_{i}$
$-\cos \theta_{i}=\mathbf{l} \cdot \mathbf{n}$ if vectors normalized
- There are also three coefficients, $\mathrm{k}_{\mathrm{r}}, \mathrm{k}_{\mathrm{b}}, \mathrm{k}_{\mathrm{g}}$ that show how much of each color component is reflected

Specular Surfaces

- Most surfaces are neither ideal diffusers nor perfectly specular (ideal reflectors)
- Smooth surfaces show specular highlights due to incoming light being reflected in directions concentrated close to the direction of a perfect reflection

specular highlight

"
 Modeling Specular Relections

- Phong proposed using a term that dropped off as the angle between the viewer and the ideal reflection increased

The Shininess Coefficient

- Values of α between 100 and 200 correspond to metals
- Values between 5 and 10 give surface that look like plastic

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

