Shading II

Ed Angel
 Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Objectives

- Continue discussion of shading
- Introduce modified Phong model
- Consider computation of required vectors

Ambient Light

- Ambient light is the result of multiple interactions between (large) light sources and the objects in the environment
- Amount and color depend on both the color of the light(s) and the material properties of the object
- Add $\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}$ to diffuse and specular terms
reflection coef intensity of ambient light

Distance Terms

- The light from a point source that reaches a surface is inversely proportional to the square of the distance between them
- We can add a factor of the
form $1 /\left(a d+b d+d^{2}\right)$ to
the diffuse and specular terms
- The constant and linear terms soften the effect of the point source

Light Sources

- In the Phong Model, we add the results from each light source
- Each light source has separate diffuse, specular, and ambient terms to allow for maximum flexibility even though this form does not have a physical justification
- Separate red, green and blue components
- Hence, 9 coefficients for each point source
$-I_{d r}, I_{d g}, I_{d b}, I_{s r}, I_{s g}, I_{s b}, I_{a r}, I_{a g}, I_{a b}$

Material Properties

- Material properties match light source properties
- Nine absorbtion coefficients
- $\mathrm{k}_{\mathrm{dr}}, \mathrm{k}_{\mathrm{dg}}, \mathrm{k}_{\mathrm{db}}, \mathrm{k}_{\mathrm{sr}}, \mathrm{k}_{\mathrm{sg}}, \mathrm{k}_{\mathrm{sb}}, \mathrm{k}_{\mathrm{ar}}, \mathrm{k}_{\mathrm{ag}}, \mathrm{k}_{\mathrm{ab}}$
- Shininess coefficient α

-"'I" Adding up the Components

For each light source and each color component, the Phong model can be written (without the distance terms) as
$\mathrm{I}=\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\mathrm{d}} \mathbf{I} \cdot \mathbf{n}+\mathrm{k}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}(\mathbf{v} \cdot \mathbf{r})^{\alpha}+\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}} \boldsymbol{n}$
For each color componenk we add contributions from all sources

- The specular term in the Phong model is problematic because it requires the calculation of a new reflection vector and view vector for each vertex
- Blinn suggested an approximation using the halfway vector that is more efficient

The Halfway Vector

The University of New Mexico

- \mathbf{h} is normalized vector halfway between I and \mathbf{v}

$$
\mathbf{h}=(\mathbf{l}+\mathbf{v}) /|\mathbf{l}+\mathbf{v}|
$$

"'L" Using the halfway angle

- Replace ($\mathbf{v} \cdot \mathbf{r})^{\alpha}$ by $(\mathbf{n} \cdot \mathbf{h})^{\beta}$
- β is chosen to match shineness
- Note that halway angle is half of angle between \mathbf{r} and \mathbf{v} if vectors are coplanar
- Resulting model is known as the modified Phong or Blinn lighting model
- Specified in OpenGL standard

Example

Only differences in these teapots are the parameters in the modified Phong model

- \mathbf{l} and \mathbf{v} are specified by the application
- Can computer \mathbf{r} from \mathbf{I} and \mathbf{n}
- Problem is determining \mathbf{n}
- For simple surfaces is can be determined but how we determine \mathbf{n} differs depending on underlying representation of surface
- OpenGL leaves determination of normal to application
- Exception for GLU quadrics and Bezier surfaces (Chapter 11)

Plane Normals

- Equation of plane: $\mathrm{ax}+\mathrm{by}+\mathrm{cz}+\mathrm{d}=0$
- From Chapter 4 we know that plane is determined by three points $\mathrm{p}_{0}, \mathrm{p}_{2}, \mathrm{p}_{3}$ or normal n and p_{0}
- Normal can be obtained by

$$
\mathbf{n}=\left(\mathrm{p}_{2}-\mathrm{p}_{0}\right) \times\left(\mathrm{p}_{1}-\mathrm{p}_{0}\right)
$$

Normal to Sphere

- Implicit function $f(x, y . z)=0$
- Normal given by gradient
- Sphere $\mathrm{f}(\mathbf{p})=\mathbf{p} \cdot \mathbf{p}-1$
- $\mathrm{n}=[\partial \mathrm{f} / \partial \mathrm{x}, \partial \mathrm{f} / \partial \mathrm{y}, \partial \mathrm{f} / \partial \mathrm{z}]^{\mathrm{T}}=\mathbf{p}$

Parametric Form

- For sphere

$$
\begin{aligned}
& x=x(u, v)=\cos u \sin v \\
& y=y(u, v)=\cos u \cos v \\
& z=z(u, v)=\sin u
\end{aligned}
$$

- Tangent plane determined by vectors

$$
\begin{aligned}
& \partial \mathbf{p} / \partial \mathrm{u}=[\partial \mathrm{x} / \partial \mathrm{u}, \partial \mathrm{y} / \partial \mathrm{u}, \partial \mathrm{z} / \partial \mathrm{u}] \mathrm{T} \\
& \partial \mathbf{p} / \partial \mathrm{v}=[\partial \mathrm{x} / \partial \mathrm{v}, \partial \mathrm{y} / \partial \mathrm{v}, \partial \mathrm{z} / \partial \mathrm{v}] \mathrm{T}
\end{aligned}
$$

- Normal given by cross product

$$
\mathbf{n}=\partial \mathbf{p} / \partial \mathbf{u} \times \partial \mathbf{p} / \partial \mathbf{v}
$$

General Case

- We can compute parametric normals for other simple cases
- Quadrics
- Parameteric polynomial surfaces
- Bezier surface patches (Chapter 11)

