

The University of New Mexico

Shading II

Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

- Continue discussion of shading
- Introduce modified Phong model
- Consider computation of required vectors

Ambient Light

- Ambient light is the result of multiple interactions between (large) light sources and the objects in the environment
- Amount and color depend on both the color of the light(s) and the material properties of the object
- Add $k_a \ I_a$ to diffuse and specular terms

reflection coef intensity of ambient light

Distance Terms

- The light from a point source that reaches a surface is inversely proportional to the square of the distance between them
- We can add a factor of the form $1/(ad + bd + cd^2)$ to the diffuse and specular terms

The constant and linear terms soften the effect of the point source

- In the Phong Model, we add the results from each light source
- Each light source has separate diffuse, specular, and ambient terms to allow for maximum flexibility even though this form does not have a physical justification
- Separate red, green and blue components
- Hence, 9 coefficients for each point source
 - I_{dr} , I_{dg} , I_{db} , I_{sr} , I_{sg} , I_{sb} , I_{ar} , I_{ag} , I_{ab}

Material Properties

- Material properties match light source properties
 - Nine absorbtion coefficients
 - k_{dr} , k_{dg} , k_{db} , k_{sr} , k_{sg} , k_{sb} , k_{ar} , k_{ag} , k_{ab}
 - Shininess coefficient $\boldsymbol{\alpha}$

For each light source and each color component, the Phong model can be written (without the distance terms) as

I =
$$k_d I_d I \cdot n + k_s I_s (v \cdot r)^{\alpha} + k_a I_a$$

For each color component
we add contributions from
all sources

- The specular term in the Phong model is problematic because it requires the calculation of a new reflection vector and view vector for each vertex
- Blinn suggested an approximation using the halfway vector that is more efficient

The Halfway Vector

 h is normalized vector halfway between I and v

h = (1 + v) / |1 + v|

- Replace $(\mathbf{v} \cdot \mathbf{r})^{\alpha}$ by $(\mathbf{n} \cdot \mathbf{h})^{\beta}$
- $\boldsymbol{\beta}$ is chosen to match shineness
- Note that halway angle is half of angle between r and v if vectors are coplanar
- Resulting model is known as the modified Phong or Blinn lighting model
 - Specified in OpenGL standard

Example

The University of New Mexico

Only differences in these teapots are the parameters in the modified Phong model

- I and $\ensuremath{\mathbf{v}}$ are specified by the application
- Can computer r from I and n
- Problem is determining n
- For simple surfaces is can be determined but how we determine **n** differs depending on underlying representation of surface
- OpenGL leaves determination of normal to application
 - Exception for GLU quadrics and Bezier surfaces (Chapter 11)

Plane Normals

- Equation of plane: ax+by+cz+d = 0
- From Chapter 4 we know that plane is determined by three points p_0 , p_2 , p_3 or normal n and p_0
- Normal can be obtained by

$$\mathbf{n} = (\mathbf{p}_2 - \mathbf{p}_0) \times (\mathbf{p}_1 - \mathbf{p}_0)$$

Normal to Sphere

- Implicit function f(x,y,z)=0
- Normal given by gradient
- Sphere $f(\mathbf{p})=\mathbf{p}\cdot\mathbf{p}\cdot\mathbf{1}$
- $\mathbf{n} = [\partial f / \partial x, \partial f / \partial y, \partial f / \partial z]^{T} = \mathbf{p}$

Parametric Form

- The University of New Mexico
 - For sphere

 $x=x(u,v)=\cos u \sin v$ $y=y(u,v)=\cos u \cos v$ $z=z(u,v)=\sin u$

Tangent plane determined by vectors

 $\partial \mathbf{p} / \partial \mathbf{u} = [\partial \mathbf{x} / \partial \mathbf{u}, \partial \mathbf{y} / \partial \mathbf{u}, \partial \mathbf{z} / \partial \mathbf{u}]T$ $\partial \mathbf{p} / \partial \mathbf{v} = [\partial \mathbf{x} / \partial \mathbf{v}, \partial \mathbf{y} / \partial \mathbf{v}, \partial \mathbf{z} / \partial \mathbf{v}]T$

• Normal given by cross product $\mathbf{n} = \partial \mathbf{p} / \partial \mathbf{u} \times \partial \mathbf{p} / \partial \mathbf{v}$

- We can compute parametric normals for other simple cases
 - Quadrics
 - Parameteric polynomial surfaces
 - Bezier surface patches (Chapter 11)