
Shading in OpenGL

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Objectives

• Introduce the OpenGL shading functions
•Discuss polygonal shading

- Flat
- Smooth
- Gouraud

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Steps in OpenGL shading

1. Enable shading and select model
2. Specify normals
3. Specify material properties
4. Specify lights

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Normals

• In OpenGL the normal vector is part of the state
• Set by glNormal*()

-glNormal3f(x, y, z);
-glNormal3fv(p);

• Usually we want to set the normal to have unit
length so cosine calculations are correct

- Length can be affected by transformations
- Note that scaling does not preserved length
-glEnable(GL_NORMALIZE) allows for

autonormalization at a performance penalty

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Normal for Triangle

p0

p1

p2

n
plane n ·(p - p0) = 0

n = (p2 - p0) ×(p1 - p0)

normalize n ← n/ |n|

p

Note that right-hand rule determines outward face

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Enabling Shading

• Shading calculations are enabled by
-glEnable(GL_LIGHTING)

- Once lighting is enabled, glColor() ignored
• Must enable each light source individually

-glEnable(GL_LIGHTi) i=0,1…..
• Can choose light model parameters

-glLightModeli(parameter, GL_TRUE)
•GL_LIGHT_MODEL_LOCAL_VIEWER do not use

simplifying distant viewer assumption in calculation
•GL_LIGHT_MODEL_TWO_SIDED shades both sides of

polygons independently

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Defining a Point Light Source

• For each light source, we can set an RGBA for the
diffuse, specular, and ambient components, and
for the position
GL float diffuse0[]={1.0, 0.0, 0.0, 1.0};
GL float ambient0[]={1.0, 0.0, 0.0, 1.0};
GL float specular0[]={1.0, 0.0, 0.0, 1.0};
Glfloat light0_pos[]={1.0, 2.0, 3,0, 1.0};

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glLightv(GL_LIGHT0, GL_POSITION, light0_pos);
glLightv(GL_LIGHT0, GL_AMBIENT, ambient0);
glLightv(GL_LIGHT0, GL_DIFFUSE, diffuse0);
glLightv(GL_LIGHT0, GL_SPECULAR, specular0);

8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Distance and Direction

• The source colors are specified in RGBA
• The position is given in homogeneous

coordinates
- If w =1.0, we are specifying a finite location
- If w =0.0, we are specifying a parallel source

with the given direction vector
• The coefficients in the distance terms are by

default a=1.0 (constant terms), b=c=0.0 (linear
and quadratic terms). Change by
a= 0.80;
glLightf(GL_LIGHT0, GLCONSTANT_ATTENUATION, a);

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Spotlights

•Use glLightv to set
- Direction GL_SPOT_DIRECTION
- Cutoff GL_SPOT_CUTOFF
- Attenuation GL_SPOT_EXPONENT

• Proportional to cosαφ

θ−θ φ

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Global Ambient Light

•Ambient light depends on color of light
sources

- A red light in a white room will cause a red
ambient term that disappears when the light is
turned off

•OpenGL also allows a global ambient
term that is often helpful for testing
-glLightModelfv(GL_LIGHT_MODEL_AMBIENT,
global_ambient)

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Moving Light Sources

• Light sources are geometric objects whose
positions or directions are affected by the
model-view matrix

•Depending on where we place the position
(direction) setting function, we can

- Move the light source(s) with the object(s)
- Fix the object(s) and move the light source(s)
- Fix the light source(s) and move the object(s)
- Move the light source(s) and object(s) independently

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Material Properties

• Material properties are also part of the OpenGL
state and match the terms in the modified Phong
model

• Set by glMaterialv()
GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0};
GLfloat diffuse[] = {1.0, 0.8, 0.0, 1.0};
GLfloat specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat shine = 100.0
glMaterialf(GL_FRONT, GL_AMBIENT, ambient);
glMaterialf(GL_FRONT, GL_DIFFUSE, diffuse);
glMaterialf(GL_FRONT, GL_SPECULAR, specular);
glMaterialf(GL_FRONT, GL_SHININESS, shine);

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Front and Back Faces

• The default is shade only front faces which
works correctly for convex objects

• If we set two sided lighting, OpenGL will shade
both sides of a surface

• Each side can have its own properties which are
set by using GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK in glMaterialf

back faces not visible back faces visible

14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Emissive Term

•We can simulate a light source in OpenGL
by giving a material an emissive
component

•This component is unaffected by any
sources or transformations

GLfloat emission[] = 0.0, 0.3, 0.3, 1.0);
glMaterialf(GL_FRONT, GL_EMISSION, emission);

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Transparency

•Material properties are specified as RGBA
values

•The A value can be used to make the
surface translucent

•The default is that all surfaces are opaque
regardless of A

•Later we will enable blending and use this
feature

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Efficiency

• Because material properties are part of the
state, if we change materials for many surfaces,
we can affect performance

• We can make the code cleaner by defining a
material structure and setting all materials during
initialization

• We can then select a material by a pointer

typedef struct materialStruct {
 GLfloat ambient[4];
 GLfloat diffuse[4];
 GLfloat specular[4];
 GLfloat shineness;
} MaterialStruct;

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Polygonal Shading

•Shading calculations are done for each
vertex

- Vertex colors become vertex shades

•By default, vertex shades are interpolated
across the polygon
-glShadeModel(GL_SMOOTH);

• If we use glShadeModel(GL_FLAT); the
color at the first vertex will determine the
shade of the whole polygon

18Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Polygon Normals

• Polygons have a single normal
- Shades at the vertices as computed by the

Phong model can be almost same
- Identical for a distant viewer (default) or if there

is no specular component
• Consider model of sphere
• Want different normals at
each vertex even though
this concept is not quite
correct mathematically

19Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Smooth Shading

•We can set a new
normal at each vertex

•Easy for sphere model
- If centered at origin n = p

•Now smooth shading
works

•Note silhouette edge

20Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Mesh Shading

•The previous example is not general
because we knew the normal at each
vertex analytically

•For polygonal models, Gouraud proposed
we use the average of the normals around
a mesh vertex

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|

21Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Gouraud and Phong Shading

• Gouraud Shading
- Find average normal at each vertex (vertex normals)
- Apply modified Phong model at each vertex
- Interpolate vertex shades across each polygon

• Phong shading
- Find vertex normals
- Interpolate vertex normals across edges
- Interpolate edge normals across polygon
- Apply modified Phong model at each fragment

22Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Comparison

• If the polygon mesh approximates surfaces with
a high curvatures, Phong shading may look
smooth while Gouraud shading may show edges

• Phong shading requires much more work than
Gouraud shading

- Until recently not available in real time systems
- Now can be done using fragment shaders (see

Chapter 9)
• Both need data structures to represent meshes

so we can obtain vertex normals

