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Objectives

• Introduce the OpenGL shading functions
•Discuss polygonal shading

- Flat
- Smooth
- Gouraud
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Steps in OpenGL shading

1. Enable shading and select model
2. Specify normals
3. Specify material properties
4. Specify lights
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Normals

• In OpenGL the normal vector is part of the state
• Set by glNormal*()

-glNormal3f(x, y, z);
-glNormal3fv(p);

• Usually we want to set the normal to have unit
length so cosine calculations are correct

- Length can be affected by transformations
- Note that scaling does not preserved length
-glEnable(GL_NORMALIZE) allows for

autonormalization at a performance penalty
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Normal for Triangle

p0

p1

p2

n
plane     n ·(p - p0 ) = 0

n = (p2 - p0 ) ×(p1 - p0 )

normalize n   ←  n/ |n|

p

Note that right-hand rule determines outward face
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Enabling Shading

• Shading calculations are enabled by
-glEnable(GL_LIGHTING)

- Once lighting is enabled, glColor() ignored
• Must enable each light source individually

-glEnable(GL_LIGHTi) i=0,1…..
• Can choose light model parameters

-glLightModeli(parameter, GL_TRUE)
•GL_LIGHT_MODEL_LOCAL_VIEWER do not use

simplifying distant viewer assumption in calculation
•GL_LIGHT_MODEL_TWO_SIDED shades both sides of

polygons independently
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Defining a Point Light Source

• For each light source, we can set an RGBA for the
diffuse, specular, and ambient components, and
for the position
GL float diffuse0[]={1.0, 0.0, 0.0, 1.0};
GL float ambient0[]={1.0, 0.0, 0.0, 1.0};
GL float specular0[]={1.0, 0.0, 0.0, 1.0};
Glfloat light0_pos[]={1.0, 2.0, 3,0, 1.0};

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glLightv(GL_LIGHT0, GL_POSITION, light0_pos);
glLightv(GL_LIGHT0, GL_AMBIENT, ambient0);
glLightv(GL_LIGHT0, GL_DIFFUSE, diffuse0);
glLightv(GL_LIGHT0, GL_SPECULAR, specular0);
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Distance and Direction

• The source colors are specified in RGBA
• The position is given in homogeneous

coordinates
- If w =1.0, we are specifying a finite location
- If w =0.0, we are specifying a parallel source

with the given direction vector
• The coefficients in the distance terms are by

default a=1.0 (constant terms), b=c=0.0 (linear
and quadratic terms). Change by
a= 0.80;
glLightf(GL_LIGHT0, GLCONSTANT_ATTENUATION, a);
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Spotlights

•Use glLightv to set
- Direction GL_SPOT_DIRECTION
- Cutoff GL_SPOT_CUTOFF
- Attenuation GL_SPOT_EXPONENT

• Proportional to cosαφ

θ−θ φ
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Global Ambient Light

•Ambient light depends on color of light
sources

- A red light in a white room will cause a red
ambient term that disappears when the light is
turned off

•OpenGL also allows a global ambient
term that is often helpful for testing
-glLightModelfv(GL_LIGHT_MODEL_AMBIENT,
global_ambient)
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Moving Light Sources

• Light sources are geometric objects whose
positions or directions are affected by the
model-view matrix

•Depending on where we place the position
(direction) setting function, we can

- Move the light source(s) with the object(s)
- Fix the object(s) and move the light source(s)
- Fix the light source(s) and move the object(s)
- Move the light source(s) and object(s) independently
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Material Properties

• Material properties are also part of the OpenGL
state and match the terms in the modified Phong
model

• Set by glMaterialv()
GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0};
GLfloat diffuse[] = {1.0, 0.8, 0.0, 1.0};
GLfloat specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat shine = 100.0
glMaterialf(GL_FRONT, GL_AMBIENT, ambient);
glMaterialf(GL_FRONT, GL_DIFFUSE, diffuse);
glMaterialf(GL_FRONT, GL_SPECULAR, specular);
glMaterialf(GL_FRONT, GL_SHININESS, shine);
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Front and Back Faces

• The default is shade only front faces which
works correctly for convex objects

• If we set two sided lighting, OpenGL will shade
both sides of a surface

• Each side can have its own properties which are
set by using GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK in glMaterialf

back faces not visible back faces visible
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Emissive Term

•We can simulate a light source in OpenGL
by giving a material an emissive
component

•This component is unaffected by any
sources or transformations

GLfloat emission[] = 0.0, 0.3, 0.3, 1.0);
glMaterialf(GL_FRONT, GL_EMISSION, emission);
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Transparency

•Material properties are specified as RGBA
values

•The A value can be used to make the
surface translucent

•The default is that all surfaces are opaque
regardless of A

•Later we will enable blending and use this
feature
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Efficiency

• Because material properties are part of the
state, if we change materials for many surfaces,
we can affect performance

• We can make the code cleaner by defining a
material structure and setting all materials during
initialization

• We can then select a material by a pointer

typedef struct materialStruct {
   GLfloat ambient[4];
   GLfloat diffuse[4];
   GLfloat specular[4];
   GLfloat shineness;
} MaterialStruct;
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Polygonal Shading

•Shading calculations are done for each
vertex

- Vertex colors become vertex shades

•By default, vertex shades are interpolated
across the polygon
-glShadeModel(GL_SMOOTH);

• If we use glShadeModel(GL_FLAT); the
color at the first vertex will determine the
shade of the whole polygon
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Polygon Normals

• Polygons have a single normal
- Shades at the vertices as computed by the

Phong model can be almost same
- Identical for a distant viewer (default) or if there

is no specular component
• Consider model of sphere
• Want different normals at
each vertex even though
this concept is not quite
correct mathematically
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Smooth Shading

•We can set a new
normal at each vertex

•Easy for sphere model
- If centered at origin n = p

•Now smooth shading
works

•Note silhouette edge
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Mesh Shading

•The previous example is not general
because we knew the normal at each
vertex analytically

•For polygonal models, Gouraud proposed
we use the average of the normals around
a mesh vertex

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|
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Gouraud and Phong Shading

• Gouraud Shading
- Find average normal at each vertex (vertex normals)
- Apply modified Phong model at each vertex
- Interpolate vertex shades across each polygon

• Phong shading
- Find vertex normals
- Interpolate vertex normals across edges
- Interpolate edge normals across polygon
- Apply modified Phong model at each fragment
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Comparison

• If the polygon mesh approximates surfaces with
a high curvatures, Phong shading may look
smooth while Gouraud shading may show edges

• Phong shading requires much more work than
Gouraud shading

- Until recently not available in real time systems
- Now can be done using fragment shaders (see

Chapter 9)
• Both need data structures to represent meshes

so we can obtain vertex normals


