
1Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Implementation I

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Objectives

• Introduce basic implementation strategies
•Clipping
•Scan conversion

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Overview

•At end of the geometric pipeline, vertices
have been assembled into primitives

•Must clip out primitives that are outside
the view frustum

- Algorithms based on representing primitives by
lists of vertices

•Must find which pixels can be affected by
each primitive

- Fragment generation
- Rasterization or scan conversion

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Required Tasks

•Clipping
•Rasterization or scan conversion
•Transformations
•Some tasks deferred until fragement
processing

- Hidden surface removal
- Antialiasing

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Rasterization Meta Algorithms

•Consider two approaches to rendering a
scene with opaque objects

•For every pixel, determine which object that
projects on the pixel is closest to the viewer
and compute the shade of this pixel

- Ray tracing paradigm
•For every object, determine which pixels it
covers and shade these pixels

- Pipeline approach
- Must keep track of depths

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Clipping

• 2D against clipping window
• 3D against clipping volume
• Easy for line segments polygons
• Hard for curves and text

- Convert to lines and polygons first

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Clipping 2D Line Segments

•Brute force approach: compute
intersections with all sides of clipping
window

- Inefficient: one division per intersection

8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Cohen-Sutherland Algorithm

• Idea: eliminate as many cases as possible
without computing intersections

•Start with four lines that determine the
sides of the clipping window

x = xmaxx = xmin

y = ymax

y = ymin

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

The Cases

• Case 1: both endpoints of line segment inside all
four lines

- Draw (accept) line segment as is

• Case 2: both endpoints outside all lines and on
same side of a line

- Discard (reject) the line segment

x = xmaxx = xmin

y = ymax

y = ymin

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

The Cases

•Case 3: One endpoint inside, one outside
- Must do at least one intersection

•Case 4: Both outside
- May have part inside
- Must do at least one intersection

x = xmaxx = xmin

y = ymax

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Defining Outcodes

•For each endpoint, define an outcode

•Outcodes divide space into 9 regions
•Computation of outcode requires at most
4 subtractions

b0b1b2b3

b0 = 1 if y > ymax, 0 otherwise
b1 = 1 if y < ymin, 0 otherwise
b2 = 1 if x > xmax, 0 otherwise
b3 = 1 if x < xmin, 0 otherwise

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Outcodes

•Consider the 5 cases below
•AB: outcode(A) = outcode(B) = 0

- Accept line segment

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Outcodes

•CD: outcode (C) = 0, outcode(D) ≠ 0
- Compute intersection
- Location of 1 in outcode(D) determines which

edge to intersect with
- Note if there were a segment from A to a point

in a region with 2 ones in outcode, we might
have to do two interesections

14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Outcodes

•EF: outcode(E) logically ANDed with
outcode(F) (bitwise) ≠ 0

- Both outcodes have a 1 bit in the same place
- Line segment is outside of corresponding side

of clipping window
- reject

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Outcodes

•GH and IJ: same outcodes, neither zero
but logical AND yields zero

•Shorten line segment by intersecting with
one of sides of window

•Compute outcode of intersection (new
endpoint of shortened line segment)

•Reexecute algorithm

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Efficiency

• In many applications, the clipping window
is small relative to the size of the entire
data base

- Most line segments are outside one or more
side of the window and can be eliminated
based on their outcodes

• Inefficiency when code has to be
reexecuted for line segments that must be
shortened in more than one step

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Cohen Sutherland in 3D

• Use 6-bit outcodes
• When needed, clip line segment against planes

18Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Liang-Barsky Clipping

• Consider the parametric form of a line segment

• We can distinguish between the cases by looking at the
ordering of the values of α where the line determined by
the line segment crosses the lines that determine the
window

p(α) = (1-α)p1+ αp2 1 ≥ α ≥ 0

p1

p2

19Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Liang-Barsky Clipping

• In (a): α4 > α3 > α2 > α1
- Intersect right, top, left, bottom: shorten

• In (b): α4 > α2 > α3 > α1
- Intersect right, left, top, bottom: reject

20Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Advantages

•Can accept/reject as easily as with
Cohen-Sutherland

•Using values of α, we do not have to use
algorithm recursively as with C-S

•Extends to 3D

21Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Clipping and Normalization

•General clipping in 3D requires
intersection of line segments against
arbitrary plane

•Example: oblique view

22Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Plane-Line Intersections

)(

)(

12

1

ppn

ppn
a o

!•

!•
=

23Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Normalized Form

before normalization after normalization

Normalization is part of viewing (pre clipping)
but after normalization, we clip against sides of
right parallelepiped

Typical intersection calculation now requires only
a floating point subtraction, e.g. is x > xmax ?

top view

