The University of New Mexico

Implementation I

Ed Angel
 Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Objectives

- Introduce basic implementation strategies
- Clipping
- Scan conversion

Overview

- At end of the geometric pipeline, vertices have been assembled into primitives
- Must clip out primitives that are outside the view frustum
- Algorithms based on representing primitives by lists of vertices
- Must find which pixels can be affected by each primitive
- Fragment generation
- Rasterization or scan conversion

Required Tasks

- Clipping
- Rasterization or scan conversion
- Transformations
- Some tasks deferred until fragement processing
- Hidden surface removal
- Antialiasing
"."'" Rasterization Meta Algorithms
- Consider two approaches to rendering a scene with opaque objects
- For every pixel, determine which object that projects on the pixel is closest to the viewer and compute the shade of this pixel
- Ray tracing paradigm
- For every object, determine which pixels it covers and shade these pixels
- Pipeline approach
- Must keep track of depths

Clipping

- 2D against clipping window
-3D against clipping volume
- Easy for line segments polygons
- Hard for curves and text
- Convert to lines and polygons first

Clipping 2D Line Segments

- Brute force approach: compute intersections with all sides of clipping window
- Inefficient: one division per intersection

Cohen-Sutherland Algorithm

- Idea: eliminate as many cases as possible without computing intersections
- Start with four lines that determine the sides of the clipping window

The Cases

- Case 1: both endpoints of line segment inside all four lines
- Draw (accept) line segment as is

	$y=y_{\max }$	
$x=x_{\text {min }}$	0	$x=x_{\text {max }}$
	$y=y_{\text {min }}$	

- Case 2: both endpoints outside all lines and on same side of a line
- Discard (reject) the line segment

The Cases

- Case 3: One endpoint inside, one outside
- Must do at least one intersection
- Case 4: Both outside
- May have part inside
- Must do at least one intersection

Defining Outcodes

- For each endpoint, define an outcode

$$
\mathrm{b}_{0} \mathrm{~b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3}
$$

$\mathrm{b}_{0}=1$ if $\mathrm{y}>\mathrm{y}_{\text {max }}, 0$ otherwise $\mathrm{b}_{1}=1$ if $\mathrm{y}<\mathrm{y}_{\text {min }}, 0$ otherwise $\mathrm{b}_{2}=1$ if $\mathrm{x}>\mathrm{x}_{\text {max }}, 0$ otherwise $\mathrm{b}_{3}=1$ if $\mathrm{x}<\mathrm{x}_{\text {min }}, 0$ otherwise

1001	1000	1010
0001	0000	0010
0101	0100	0110
$x=$	$x_{\text {min }} x=x_{\text {max }}$	
max		

- Outcodes divide space into 9 regions
- Computation of outcode requires at most 4 subtractions

Using Outcodes

- Consider the 5 cases below
- AB : outcode $(\mathrm{A})=$ outcode $(\mathrm{B})=0$
- Accept line segment

Using Outcodes

$\cdot C D$: outcode $(C)=0$, outcode $(D) \neq 0$

- Compute intersection
- Location of 1 in outcode(D) determines which edge to intersect with
- Note if there were a segment from A to a point in a region with 2 ones in outcode, we might have to do two interesections

Using Outcodes

-EF: outcode(E) logically ANDed with outcode(F) (bitwise) $\neq 0$

- Both outcodes have a 1 bit in the same place
- Line segment is outside of corresponding side of clipping window
- reject

Using Outcodes

- GH and IJ: same outcodes, neither zero but logical AND yields zero
- Shorten line segment by intersecting with one of sides of window
- Compute outcode of intersection (new endpoint of shortened line segment)
- Reexecute algorithm

Efficiency

- In many applications, the clipping window is small relative to the size of the entire data base
- Most line segments are outside one or more side of the window and can be eliminated based on their outcodes
- Inefficiency when code has to be reexecuted for line segments that must be shortened in more than one step
- Use 6-bit outcodes
-When needed, clip line segment against planes

Liang-Barsky Clipping

- Consider the parametric form of a line segment

$$
\mathbf{p}(\alpha)=(1-\alpha) \mathbf{p}_{1}+\alpha \mathbf{p}_{2} \quad 1 \geq \alpha \geq 0
$$

- We can distinguish between the cases by looking at the ordering of the values of α where the line determined by the line segment crosses the lines that determine the window

Liang-Barsky Clipping

- In (a): $\alpha_{4}>\alpha_{3}>\alpha_{2}>\alpha_{1}$
- Intersect right, top, left, bottom: shorten
- In (b): $\alpha_{4}>\alpha_{2}>\alpha_{3}>\alpha_{1}$
- Intersect right, left, top, bottom: reject

(a)

(b)

Advantages

- Can accept/reject as easily as with Cohen-Sutherland
- Using values of α, we do not have to use algorithm recursively as with C-S
- Extends to 3D

Clipping and Normalization

- General clipping in 3D requires intersection of line segments against arbitrary plane
-Example: oblique view
 Plane-Line Intersections

The University of New Mexico

$$
a=\frac{n \bullet\left(p_{o}-p_{1}\right)}{n \bullet\left(p_{2}-p_{1}\right)}
$$

Normalized Form

before normalization

after normalization

Normalization is part of viewing (pre clipping) but after normalization, we clip against sides of right parallelepiped

Typical intersection calculation now requires only a floating point subtraction, e.g. is $\mathrm{x}>\mathrm{x}_{\max }$?

