
Implementation II

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Objectives

• Introduce clipping algorithms for polygons
•Survey hidden-surface algorithms

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Polygon Clipping

•Not as simple as line segment clipping
- Clipping a line segment yields at most one line

segment
- Clipping a polygon can yield multiple polygons

•However, clipping a convex polygon can
yield at most one other polygon

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Tessellation and Convexity

• One strategy is to replace nonconvex (concave)
polygons with a set of triangular polygons (a
tessellation)

• Also makes fill easier
• Tessellation code in GLU library

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Clipping as a Black Box

•Can consider line segment clipping as a
process that takes in two vertices and
produces either no vertices or the vertices
of a clipped line segment

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Pipeline Clipping of Line
Segments

•Clipping against each side of window is
independent of other sides

- Can use four independent clippers in a pipeline

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Pipeline Clipping of Polygons

• Three dimensions: add front and back clippers
• Strategy used in SGI Geometry Engine
• Small increase in latency

8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Bounding Boxes

• Rather than doing clipping on a complex
polygon, we can use an axis-aligned bounding
box or extent

- Smallest rectangle aligned with axes that
encloses the polygon

- Simple to compute: max and min of x and y

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Bounding boxes

Can usually determine accept/reject based
only on bounding box

reject

accept
requires detailed
 clipping

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Clipping and Visibility

•Clipping has much in common with
hidden-surface removal

• In both cases, we are trying to remove
objects that are not visible to the camera

•Often we can use visibility or occlusion
testing early in the process to eliminate as
many polygons as possible before going
through the entire pipeline

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Hidden Surface Removal

•Object-space approach: use pairwise
testing between polygons (objects)

•Worst case complexity O(n2) for n polygons

partially obscuring can draw independently

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Painter’s Algorithm

•Render polygons a back to front order so
that polygons behind others are simply
painted over

B behind A as seen by viewer Fill B then A

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Depth Sort

•Requires ordering of polygons first
- O(n log n) calculation for ordering
- Not every polygon is either in front or behind all

other polygons

• Order polygons and deal with
easy cases first, harder later

Polygons sorted by
distance from COP

14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Easy Cases

•A lies behind all other polygons
- Can render

•Polygons overlap in z but not in either x or y
- Can render independently

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Hard Cases

Overlap in all directions
but can one is fully on
one side of the other

cyclic overlap

penetration

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Back-Face Removal (Culling)

θ
•face is visible iff 90 ≥ θ ≥ -90
equivalently cos θ ≥ 0
or v • n ≥ 0

•plane of face has form ax + by +cz +d =0
but after normalization n = (0 0 1 0)T

•need only test the sign of c

•In OpenGL we can simply enable culling
but may not work correctly if we have nonconvex objects

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Image Space Approach

• Look at each projector (nm for an n x m
frame buffer) and find closest of k
polygons

•Complexity O(nmk)
•Ray tracing
• z-buffer

18Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

z-Buffer Algorithm

• Use a buffer called the z or depth buffer to store
the depth of the closest object at each pixel
found so far

• As we render each polygon, compare the depth
of each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and
update z buffer

19Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Efficiency

• If we work scan line by scan line as we
move across a scan line, the depth
changes satisfy aΔx+bΔy+cΔz=0

Along scan line
Δy = 0
Δz = - Δx

c

a

In screen space Δx = 1

20Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Scan-Line Algorithm

•Can combine shading and hsr through
scan line algorithm

scan line i: no need for depth
information, can only be in no
or one polygon

scan line j: need depth
information only when in
more than one polygon

21Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Implementation

•Need a data structure to store
- Flag for each polygon (inside/outside)
- Incremental structure for scan lines that stores

which edges are encountered
- Parameters for planes

22Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Visibility Testing

• In many realtime applications, such as
games, we want to eliminate as many
objects as possible within the application

- Reduce burden on pipeline
- Reduce traffic on bus

•Partition space with Binary Spatial
Partition (BSP) Tree

23Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Simple Example

consider 6 parallel polygons

top view

The plane of A separates B and C from D, E and F

24Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

BSP Tree

•Can continue recursively
- Plane of C separates B from A
- Plane of D separates E and F

•Can put this information in a BSP tree
- Use for visibility and occlusion testing

