
Implementation III

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Objectives

•Survey Line Drawing Algorithms
- DDA
- Bresenham

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Rasterization

•Rasterization (scan conversion)
- Determine which pixels that are inside primitive

specified by a set of vertices
- Produces a set of fragments
- Fragments have a location (pixel location) and

other attributes such color and texture
coordinates that are determined by interpolating
values at vertices

•Pixel colors determined later using color,
texture, and other vertex properties

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Scan Conversion of Line
Segments

•Start with line segment in window
coordinates with integer values for
endpoints

•Assume implementation has a
write_pixel function

y = mx + h

x

y
m

!

!
=

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

DDA Algorithm

• Digital Differential Analyzer
- DDA was a mechanical device for numerical

solution of differential equations
- Line y=mx+ h satisfies differential equation
 dy/dx = m = Δy/Δx = y2-y1/x2-x1

• Along scan line Δx = 1

For(x=x1; x<=x2,ix++) {
 y+=m;
 write_pixel(x, round(y), line_color)
}

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Problem

•DDA = for each x plot pixel at closest y
- Problems for steep lines

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Symmetry

•Use for 1 ≥ m ≥ 0
•For m > 1, swap role of x and y

- For each y, plot closest x

8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Bresenham’s Algorithm

• DDA requires one floating point addition per step
• We can eliminate all fp through Bresenham’s

algorithm
• Consider only 1 ≥ m ≥ 0

- Other cases by symmetry
• Assume pixel centers are at half integers
• If we start at a pixel that has been written, there

are only two candidates for the next pixel to be
written into the frame buffer

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Candidate Pixels

1 ≥ m ≥ 0

last pixel

candidates

Note that line could have
passed through any
part of this pixel

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Decision Variable

-

d = Δx(a-b)

d is an integer
d < 0 use upper pixel
d > 0 use lower pixel

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Incremental Form

•More efficient if we look at dk, the value of
the decision variable at x = k

dk+1= dk –2Δy, if dk > 0
dk+1= dk –2(Δy- Δx), otherwise

•For each x, we need do only an integer
addition and a test
•Single instruction on graphics chips

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Polygon Scan Conversion

•Scan Conversion = Fill
•How to tell inside from outside

- Convex easy
- Nonsimple difficult
- Odd even test

• Count edge crossings

- Winding number
odd-even fill

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Winding Number

•Count clockwise encirclements of point

•Alternate definition of inside: inside if
winding number ≠ 0

winding number = 2

winding number = 1

14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Filling in the Frame Buffer

•Fill at end of pipeline
- Convex Polygons only
- Nonconvex polygons assumed to have been

tessellated
- Shades (colors) have been computed for

vertices (Gouraud shading)
- Combine with z-buffer algorithm

• March across scan lines interpolating shades
• Incremental work small

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Interpolation

span

C1

C3

C2

C5

C4
scan line

C1 C2 C3 specified by glColor or by vertex shading
C4 determined by interpolating between C1 and C2
C5 determined by interpolating between C2 and C3
interpolate between C4 and C5 along span

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Flood Fill

• Fill can be done recursively if we know a seed
point located inside (WHITE)

• Scan convert edges into buffer in edge/inside
color (BLACK)
flood_fill(int x, int y) {
 if(read_pixel(x,y)= = WHITE) {
 write_pixel(x,y,BLACK);
 flood_fill(x-1, y);
 flood_fill(x+1, y);
 flood_fill(x, y+1);
 flood_fill(x, y-1);
} }

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Scan Line Fill

• Can also fill by maintaining a data structure of all
intersections of polygons with scan lines

- Sort by scan line
- Fill each span

vertex order generated
 by vertex list desired order

18Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Data Structure

19Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Aliasing

• Ideal rasterized line should be 1 pixel wide

•Choosing best y for each x (or visa versa)
produces aliased raster lines

20Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Antialiasing by Area
Averaging

• Color multiple pixels for each x depending on
coverage by ideal line

original antialiased

magnified

21Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Polygon Aliasing

•Aliasing problems can be serious for
polygons

- Jaggedness of edges
- Small polygons neglected
- Need compositing so color
of one polygon does not
totally determine color of
pixel

All three polygons should contribute to color

