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ABSTRACT

Real-valued data sequences are often affected by structured noise in
addition to random noise. For example, in pressure transient anal-
ysis (PTA), semi-log derivatives of log-log diagnostic plots show
such contamination of structured noise; especially under multi-
phase flow condition. In PTA data, structured noise refers to the
response to some physical phenomena which is not originated at
the reservoir, such as fluid segregation in wellbore or pressure leak
due to a brief opening of a valve. Such noisy responses commonly
appear to mix up with flow regimes, hindering further reservoir
flow analysis.

In this paper, we use the Singular Spectrum Analysis (SSA) to de-
compose PTA data into additive components; subsequently we use
the eigenvalues associated with the decomposed components to
identify the components that contain most of the structured noise
information. We develop a semi-supervised process that requires
minimal expert supervision in tuning the solitary parameter of our
algorithm using only one pressure buildup scenario. An empirical
evaluation using real pressure data from oil and gas wells shows
that our approach can detect a multitude of structured noise with
74.25% accuracy.
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1 INTRODUCTION

Sensor data collection and analysis have become ubiquitous in pro-
duction and manufacturing operations for continuous surveillance
and monitoring [16]. These sensors gather and record data at a reg-
ular interval, which in turn, produces a vast amount of data, mostly
in the form of time series [13]. Using data mining techniques, this
massive data trove can be potentially transformed into explicit ac-
tionable knowledge. However, these datasets are often contami-
nated with noise due to inefficient calibration, measurement error,
external interruption, etc. and this presence of noise is the main
hindrance to further automated analysis and decision-making pro-
cess.

In the oil and gas industry, permanent downhole pressure gauges
are installed in wells drilled in oil and gas fields to monitor produc-
tion [15]. The deployed pressure gauges continuously record pres-
sure in well at regular time intervals producing a time series of the
downhole pressure. This time series is utilized in pressure transient
analysis (PTA) to determine reservoir and well characteristics [5],
to continuously asses reservoir and well condition and to forecast
about future production performance. The log-log pressure deriv-
ative plot during the shut-in period of well is widely used in PTA
for well property evaluation [2].

Identifying different flow regimes in log-log pressure deriva-
tive data during the shut-in period reveals characteristics of the
hydrocarbon-bearing formation, i.e., reservoir, and condition of the
well. Currently, the task of identifying the flow regime is mostly
being done by manual observation, although some automated PTA
methods have been developed recently [6, 22, 24]. One of the main
impediment of fully automated PTA is that flow regime identifica-
tion in log-log pressure derivative data is misled due to the pres-
ence of structured noise.

There is no unified definition of noise in general; instead, it
is highly domain and problem specific as they relate to different
events in different observation and measurement systems. We use
the terminology structured noise, in the context of pressure data
recorded by downhole gauge, to distinguish the usual pressure re-
sponse from the pressure response to non-reservoir origin physi-
cal phenomenon, for example, fluid segregation in wellbore or pres-
sure leak due to a brief opening of a valve. Mostly they are devia-
tions from the usual response for a brief amount of time positions
in the original data affecting the overall trend. These structured
noises often maintain a similar pattern between different observa-
tion which implies that there must be a common underlying phys-
ical event that may have generated them.

In Figure 1, we show two pressure derivative data, often also re-
ferred to as pressure buildup (PBU) data. In Figure 1(left), the PBU
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Figure 1: (left) An ideal pressure derivative data without any
structured noise; (right) A structured noise corrupted pres-
sure derivative data where red labeling indicates the struc-
tured noise (both data from Well-A [4]).

data is free from structured noise, and in Figure 1(right), the PBU
data is contaminated by structured noises which are marked in red
(automatically labeled using our method, showing an accurate de-
tection case-study). These structured noises often mix-up with flow
regimes; and in those cases flow regime identification algorithms
generate erroneous result preventing further down the road anal-
ysis. Hence, an efficient and robust structured noise detection al-
gorithm will open up new frontiers of data mining application on
PBU data. In this paper, we propose a structured noise detection
method for well test pressure derivative data using singular spec-
trum analysis (SSA).

1.1 Why the problem is challenging?

The pressure derivative data is non-stationary, has variable dura-
tion and amplitude offset; thus the use of Fourier Transform based
filtering techniques are not feasible. The associated random noise
in the log-log pressure data is easier to filter out as they pose signif-
icantly different spectral property compared to the noise-free sig-
nal. However, structured noises occur for a brief interval of time
while maintaining a contiguous shape; thus they appear as a part
of the original signal. Again, their frequency spectrum is wide, of-
ten overlaps with the spectrum of the noise-free signal. Moreover,
structured noise segments have variable length; their shape and
statistical properties vary in between different data observation,
which obsoletes the use of segment-based classification approach.
Wavelet is a powerful spectral filtering tool which produces ac-
ceptable results in many a similar scenario. One main drawback
of Wavelet analysis is that it requires the manual selection of ba-
sis function on which the filtering quality depends a lot. As our
data has a high level of variation from one observation to another
as well as one well to another, one selected fixed basis is not ca-
pable of working optimally for all the variations. A more robust
method is required that can adapt to the variation of data. More-
over, our objective is not only to filter out but rather detect and
localize structured noise segments in the noisy observation, which
poses new challenges.

1.2 Related Works

Extensive studies have been carried out to perform noise removal
on pressure data due to its usability in evaluating reservoir char-
acteristics. Most related studies have performed noise removal on
the original pressure data before calculating the derivative. But, re-
moval of noise before calculating the derivative often time smooths

2953

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

out finer details. Also, noise is more pronounced in derivative data
which requires more rigorous noise removal techniques. To the
best of our knowledge, this is the first attempt to detect structured
noise in pressure derivative data.

Noise reduction in the original pressure data is usually done us-
ing spectral methods and regression analysis. Wavelet transform
has been widely used to reduce noise [23]. Some other common
filtering methods are Butterworth, Locally Weighted Scatterplot
Smooth (LOESS), Auto-regressive Moving Average (ARMA) [21].
In [19], they have shown a comparative evaluation of the afore-
mentioned denoising methods for well pressure data. Among all
these, wavelet performs better. But as mentioned earlier, one of
the main challenges in applying wavelet is that we need to select
the basis for wavelets manually and the performance of the noise
detection varies depending on the choice of the basis. As a result of
this basis dependency, it fails to adapt to data from different well
types associated with a diverse range of structured noise.

1.3 Owur Approach

In this paper, we propose a method where we use singular spec-
trum analysis (SSA) [3] to detect structured noise segments in real
oil and gas well log-log pressure derivative data to automate the
pressure transient analysis process. The SSA is a non-parametric
time series analysis tool and does not make a prior assumption
about the data. There are hyper-parameters involved to be adapted
to the problem in hand. It has been used in a multitude of prob-
lem domains. SSA has been mainly used for time-series modeling
[26], structural change detection [20], forecasting [10]. Recently it
is being widely used in biomedical signal processing for noise and
artifacts removal [7, 17, 18, 25].

SSA decomposes a signal into multiple additive components,
which usually can be interpreted as the trend components, ampli-
tude and phase modulated oscillatory components and the unstruc-
tured random noise components [11]. We use SSA to decompose
our signal of interest into such components and we identify the rel-
evant components that capture most of the information about the
structured noise present in the data. As structured noise poses os-
cillatory behavior, it should be projected onto the decomposed os-
cillatory components and we use the eigenvalues associated with
the decomposed components to identify these components. And,
once we identify the relevant components, we localize the struc-
tured noise segments present in those components using a thresh-
old value. To select the threshold value, we employ a single-sample
learning method whenever we use our algorithm on new well data.
After detecting the structured noise, we perform further boundary
refinement for precise structured noise localization.

Experimental evaluation using real pressure data from oil and
gas wells shows that our approach can identify a multitude of struc-
tured noise with 74.25% accuracy. Beside, the algorithm is invari-
ant to the amount and types of noise. The algorithm is generalizable
to structured noise detection in other kinds of data. By employing
single sample learning to fine tune the threshold parameter each
time we apply our method to new well data, we ensure that our
method can adapt to a multitude of structured noise types which
show large variation from well to well. Moreover, the algorithmic
computation need not rerun for each threshold value change. In
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Figure 1, we have shown an example of our noise detection result
where the left figure shows accurate zero noise detection in the ab-
sence of noise and the right figure shows precise noise detection.

The rest of the paper is organized as follows. In section 2, we give
a brief description of the Singular Spectrum Analysis method. In
section 3, we describe our structured noise detection method using
SSA. In section 4, we give a description of our method’s practical
experimentation and the obtained result. In section 5, we discuss
various aspects of our algorithm and in section 6, we draw a con-
clusion.

2 SINGULAR SPECTRUM ANALYSIS

Singular Spectrum Analysis [3, 8] works with a one dimensional
time series of finite length, and decomposes the time series into
additive components. The algorithm consists of two main steps:
decomposition and reconstruction. The decomposition stage is com-
posed of embedding and singular value decomposition. The
reconstruction stage is composed of grouping and diagonally av-
eraging. Below we provide a brief description of each of these four
steps.

2.1 Embedding

let’s consider a real-valued non-zero time series S = (51,52, ..., SN)
of length N where N > 2. In the embedding step, the time series S
is converted into a trajectory matrix X by sliding an M-point win-
dow over the time series where M is called the embedding dimen-
sion. In this step the one-dimensional time series gets mapped into
a sequence of K = N — M + 1 multi-dimensional lagged column
vectors of length M that constitutes the column of the trajectory
matrix X.

s1 $9 SK
$2 $3 SK+1

X= (1)
SM SM+1 SN

All of the anti-diagonal elements (when i+ j = constant, where
i and j are row and column indices) of the trajectory matrix (1) has
same value (such matrices are also known as Hankel matrix). Em-
bedding dimension M directly affects the decomposition quality.
The optimal embedding dimension depends on the purpose of the
analysis and the nature of the time series.

2.2 Singular Value Decomposition

Singular Value Decomposition (SVD) of a real non-zero matrix X
of size M x K decomposes the matrix into a sum of rank one or-
thogonal elementary matrices (X;).

L L
X = ZX,- = Z Vaieio! @
i=1 i=1

Here, A; are the eigenvalues of the covariance matrix ¥ = XX
in descending order, i.e, A1 >A2 > --- >A; > 0,and ey, ez, - - - e,

€i

xT .
i and L is the

no of non-zero singular values of X, L = argmaxil{/li > 0}. The

are the corresponding eigenvectors. Here, v;
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collection (VA;e;v;) is called the eigentriple of the SVD (2). The
eigenvectors are also called empirical orthogonal functions (EOF)
and can be considered as a set of data adaptive orthogonal basis
functions for signal decomposition.

The eigenvalue A; represents the amount of partial variance in
the direction of the corresponding eigenvectors or EOF v; and the
sum of the eigenvalues gives the total variance of the original time
series. The energy contribution of the i-th eigenvector is given by

L’l and is called the singular spectrum of the time

th ti L
e ratio T,

series.

2.3 Grouping

In the grouping step, we partition the elementary matrices ( X1,
Xa, -+, Xp) into m disjoint groups I, I2, - - - I, and then sum the
matrices in each subset. For a group I; whose member indices are
(ij,»- - -1j,) the resulting matrix would be X, = X;, +--- + Xj;
and we compute such matrix (Xp,, X, - - - Xy, ) for all the groups.
Finally we obtain the expansion of the trajectory matrix X as a
summation (3) of the grouped matrices:

> (3 %)

k=1 i€l

m
X =
k=

(3)

X5 =
1

There is no specific rule dictating how to perform the grouping
and it depends on the purpose of the time series analysis and the
type of signal and noise. Most often, the singular spectrum and the
singular vectors are used to form groups of similar components.

2.4 Diagonal Averaging

In the last step of the reconstruction phase, each of the matrices
formed after grouping is converted into a one-dimensional time
series of length N by applying a linear transformation called di-
agonal averaging or hankelization [11], where the cross-diagonal
elements are averaged to obtain a single value. If X}, is a recon-
structed trajectory matrix with dimension M X K, we average over
the elements i + j = g + 2 to calculate the gth element of the
converted time series, where i and j are row and column indices. If
the elements of the matrix X I, are Yj j, then we can formalize the
averaging procedure using following equations:

n
H Z Ym,n-m+1 forl<n<M
m=1
M
leg = % Z Ym,n-m+1 forM<n<K
m=1
M
1
N-nF1 Ym, n-m+1 forK+1<n<N
m=n—-K+1

4)

This digonalizing (4) of each of the reconstructed trajectory ma-
trices (X7, , X1,,- -+ , X1,,,) produces m resultant time series, whom
we refer as reconstructed components (RCs) from here after. These
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reconstructed components are the final decomposition of the orig-
inal time series and we can revert back to the original time series
by summing them up (5).

m
=

k=1

®)

2.5 Why SSA?

SSA is a non-parametric, data-adaptive time series decomposition
and analysis method introduced in [3]. SSA decomposes a time se-
ries into multiple interpretable additive components, which usu-
ally can be considered as the trend components, phase and ampli-
tude modulated oscillatory components and the unstructured ran-
dom noise components [11]. An important feature of SSA is that
trends obtained in this way are not necessarily linear. As SSA is
capable of separating out non-linear trends and oscillatory com-
ponents it is an ideal method to decompose our pressure deriva-
tive data into a noise-free signal and structured noise components.
Also, it does not make any underlying assumption (i.e.; stationar-
ity, linearity, normality) about the time series of interest. The basis
used in SSA to decompose the signal is computed independently
for each time series in consideration [28]. Due to the data-adaptive
property, SSA is highly suitable for our purpose as our data obser-
vation has a high amount of variation in their duration, amplitude
offset, rate-of-change and noise structure.

3 STRUCTURED NOISE DETECTION

An ideal noise-free pressure data is smooth and slow varying. But,
often they are affected by structured noise and unstructured ran-
dom noise. Thus, real-life pressure derivative data are often a com-
bination of noise-free signal, structured noise, random noise. The
smooth, slowly varying noise-free signal can be regarded as the
underlying trend of the observed noise corrupted pressure deriva-
tive data and the structured noises are randomly occurring devia-
tions from the usual smooth signal for a brief interval of time and
show oscillatory behavior. In Figure 2(left), we show the original
pressure derivative data as a combination of noise-free signal and
structured noises. In Figure 2(right), we subtract the underlying
trend from the pressure derivative data and plot the residue which
has non-zero values only in those segments that correspond to the
structured noise in the original signal. From the spectral perspec-
tive, the noise-free signal lies on the lower range of the frequency
spectrum, where else the structured noises are in the mid-range,
and the random unstructured noises are in the higher range.

SSA is suitable for decomposing pressure derivative data into
additive components that can be meaningfully categorized into
trends representing the noise-free signal, phase and amplitude mod-
ulated oscillatory components capturing the structured noise com-
ponents and the random noise components. However, three algo-
rithmic questions remain unanswered.

(1) How do we decompose signals efficiently and accurately so
the structured noise is separated from the trends? Poorly
performed decomposition may combine structured noise and
trend in the same component, hindering the noise removal
process.
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Figure 2: (left) Smooth trend over the noisy signal; (right)
structured noise as residue after subtracting trend from the
noisy signal (PBU-13-Well-A [4]).

(2) How do we identify components that contain only struc-
tured noise? There can be one or more components for struc-
tured noise.

(3) How do we temporally locate the structured noise segments
in the structured noise components? The structured noise
can be of variable length and appear at an arbitrary time.

We address these three issues in the subsequent subsections.

3.1 Signal Decomposition

The separation of components in SSA decomposition is a hard-
pressed as well as a widely discussed topic in SSA literature [1,
9, 12]. There are several published techniques to measure the qual-
ity of the separation, for example, the weighted correlation of the
decomposed components [14]. The quality of decomposition is lim-
ited by the nature of the signal as well as by the components to be
extracted. Exact separability cannot be achieved for real-world sig-
nals as there are usually overlap in their frequency spectrum.

There are no fixed rules on how to select the embedding dimen-
sion; rather it depends on the purpose of the decomposition and
the nature of the time series being decomposed. It is generally con-
sidered that the larger the embedding dimension, the better the
decomposition quality and highest quality of decomposition can
be achieved when the embedding dimension (M) is equal to the
half of the signal length [11]. For periodic signal extraction there
are some specific guidelines, for example, M should capture at least
one full cycle of desired lowest frequency component [25].

For a small signal with a complex structure, a comparatively
larger M may produce component mixing. Hence, it is suggested
in [11], to select a small M for such a signal. On [27] it is demon-
strated that the embedding dimension is related to the frequency
bandwidth of each reconstructed component; the frequency band-
width of each decomposed component is limited to fs/M where
f5 is the sampling rate of the signal. Hence, the selection of M can
lead to a trade-off between component mixing vs. decomposition
resolution. Also, a larger M corresponds to an increased amount of
computation and time complexity.

Considering the above-mentioned fact, for a small signal with
complex structure, in [27], the embedding dimension is selected ac-
cording to the rule M = f;/f;,(6), where f}, is determined by the
frequency bandwidth of desired signal structure to be extracted. As
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Figure 3: (a)-(e)Reconstructed components (RC1-RC5) after
SSA decomposition (f) Sum of RC2 through RC5 overlapped
with structured noise residue. (PBU-13-Well-A [4])

our main goal is to separate structured noise component, the selec-
tion of M needs to be based on noise property. In our data, the sam-
pling frequency is 100Hz, which means a regular sampling of 100
data points per one log cycle of the time axis, and the aperiodic
structured noise components observed in this experiment gener-
ally expands for 15-40 data points which leads to a frequency band-
width f}, ~ 4Hz. Thus, based on, Eqtn (6), we use M = fs/fb =
100/4 = 25 as the embedding dimension. In Figure 3[(a)-(e)], we
plot the first five reconstructed components (RC) and in Figure 3(f),
we plot the summation of RC2 through RC5 overlapped with the
structured noise residue for M=25 for PBU-13-Well-A data [4].

3.2 Structured Noise Component Identification

Once the time series is decomposed into additive components, the
next objective is to identify the components that capture most of
the structured noise information. This component of interest iden-
tification step is formally called the grouping. Similar to the embed-
ding dimension selection step, there is no strict rule about how to
perform this grouping, rather heuristics are used based on the type
of the time series of interest and the purpose of the analysis [27].
An eigenvalue represents the amount of variance captured by
the corresponding component[8]. In general, the largest eigenval-
ues are associated with the trend components like the smooth, slow
varying noise-free signal, the intermediate ones are related with
the mid-frequency components like the oscillatory structured noises,
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Figure 4: SSA eigenvalue spectra with 95% confidence limit
for all 38 pressure derivative data of Well-A[4].

and lower values are associated with the high-frequency random
noises. Our noise-free signal is supposed to be captured by the
trend components which have high eigenvalues associated with
them as they dictate the overall shape of the time series and hence
accounts for most of the variance present in the signal. And the
structured noise components should be projected onto the oscillat-
ing ones which has mid-range eigenvalues as they account for the
short-duration oscillation around the trend.

Therefore, we use this discriminatory property of eigenvalues
associated with the components to identify the trend components
and the structured noise-capturing oscillatory components. In Fig-
ure 3, we have plotted the reconstructed components after per-
forming SSA decomposition on PBU-13-Well-A [4]. In Figure 4, we
plot the eigenvalue spectra of the associated decomposed compo-
nents for the 38 pressure derivative data of Well-A. We observe that
the first few eigenvalues account for most of the variance present
in the signal, and after those, most of the eigenvalues are close
to zero. These almost zero eigenvalues are usually associated with
the noisy components. In [18], they have derived a rule to discard
those noisy components. Based on their technique we reject all the
components relating to the eigenvalues A;, if i > £, where

a

i A
L = argmin {ﬁ——lk >0.95
J

j=17"J

The trend components usually have higher values in the similar
range and the structured noise components have comparatively
lower eigenvalues. In the Figure 3(a), we observe that the RC1 rep-
resents the trend and in Figure 3(f), the summation of RC2 through
RC5 matches with the structured noise residue. Also, in the eigen-
value spectra, there is a significant gap between RC1 and the rest
of the RCs. Hence, to generalize our procedure, we distinguish be-
tween the trend and the structured noise components by identify-
ing the largest gap in between two consecutive eigenvalues and
then based on that differentiating point we group the trend and
structured noise components.
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3.3 Structured Noise Localization

Ideally, after SSA decomposition, the trend component would rep-
resent the noise-free smooth signal, and the structured noise com-
ponent should have non-zero values only in segments correspond-
ing to structured noises in the original signal. But often time due
to high amplitudes of the structured noises, component mixing
occurs and they affect the trend components. Also, in the struc-
tured noise components, noise oscillations expand to neighboring
regions, for example; where there are flow regimes in between
two structured noises, or flow regimes close to high amplitude
structured noises. Nevertheless, the amplitude of oscillatory com-
ponents is still highly correlated to the likelihood of occurrence
of structured noise. Thus, to localize structured noise segments
from the structured noise components, we use a threshold value to
compare against the absolute value of the summation of the struc-
tured noise components, and the sample data points exceeding the
threshold value are identified as structured noise.

3.3.1 Single Sample Threshold Selection. In our pressure deriva-
tive data, in some observation the structured noises have a high
amplitude, where else in some observation they have low devia-
tion from the actual trend. Though the structured noise properties
maintain somewhat similarities in a single well, the variation be-
comes prominent in between observation of two different well. So,
it is quite impossible to obtain a globally optimal threshold. In sum-
mary, we need to have a mechanism to modify our threshold from
well to well. To address this issue, we employ a semi-supervised
learning approach where we select the threshold by manual evalu-
ation of noise detection performance for a range of threshold val-
ues using one PBU data per well. Then, we select the threshold
which results in best performance to be used as a fixed threshold
for the rest of the observation of that well. Though this process
might seem laborious, in practical scenarios, we can automate the
noise detection procedure for a few dozens of other pressure de-
rivative observation by performing a manual evaluation on only a
single data observation.

3.3.2  Boundary Refinement. The selected structured noise compo-
nents have high values in the center of the noise segment, and
the region where noise transcends into signal has comparatively
lower values. In Figure 4(left), we have plotted the absolute value
of the summation of the oscillatory components, which portrays
the aforementioned scenario. To tackle this problem, we calculate
a windowed average of the absolute value of the summation of
the oscillatory components which is plotted in Figure 4(right). In
this case, the boundary region of structured noise segments has
increased amplitude than before which helps in the precise local-
ization of whole noise segment.

4 EXPERIMENT AND RESULTS

We use real log-log pressure data and the semi-log derivative of
log-log pressure data from two real gas well and one oil well for
quantitative accuracy calculation. Moreover, we use three separate
oil well pressure data for qualitative evaluation by the domain ex-
pert.
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4.1 Data Collection and Preprocessing

The pressure data is extracted from the shut-in period of the con-
tinuous stream of pressure data recorded by the permanent down-
hole pressure gauge installed in wells drilled in oil and gas fields.
The extracted shut-in period pressure values were converted into
pressure change data with reference to the pressure value at the
beginning of the shut-in period. Both the pressure change data
and time axis was converted into log scale which in turn produced
the log-log pressure change data. Finally, the semi-log derivative
of this pressure change was calculated using the method of Bour-
det [2] to produce the log-log pressure derivative plot. From this
plot, we remove the data points with an undefined value, which oc-
curs due to a negative change in pressure value around that point
in time. Also. we perform a linear interpolation to create evenly
spaced data points from irregularly sampled and log-scale trans-
formed data points.

4.2 Data Labeling and Accuracy Calculation

We use F-score measure to calculate the accuracy of our proposed
method. We use log-log pressure derivative data where both struc-
tured noise and flow regime segments have been manually labeled
by domain experts. We label the flow regimes in addition to the
structured noise segments as there are some segments present in
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Figure 8: Automatic noise detection result on real pressure build up data from Well-C [4]; (left) structured noise due to fluid
segregation; (middle) structured noise due to fluid segregation; (right) structured noise due fluid segregation.

Table 1: Accuracy

Well No Lower Minimum Minimum
Bound Threshold > 0 Threshold > 0.02
A 69.73% 74.07% 75.02%
B 63.22% 66.22% 67.14%
C 80.36% 80.36% 80.59%
Average 71.1% 73.55% 74.25%

the pressure derivative data which are neither noise nor flow. While
calculating the accuracy of our algorithm we consider only the la-
beled flow regimes and structured noise segments.

We compare our detected structured noise segments with the
labeled ground truth data and calculate true positive (TP) , false
positive (FP), and false negative (FN). Then, we use the (TP), (FP)
and (FN) to calculate precision,recall, and finally the F-score.

TP TP

precision = ———,recall = ———
TP+ FP TP+ FN

precision - recall
F—score =2 —————
precision + recall
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4.3 Threshold Selection

The threshold parameter is selected in a semi-supervised fashion
where one pressure derivative data is used to select the threshold
parameter for rest of the data of the same well. First, the user man-
ually labels one selected pressure derivative data. Then noise detec-
tion is performed on that data for a range of threshold values, and
F-score is calculated for each of the threshold values to select the
threshold corresponding to the highest F-score. This best perform-
ing threshold value is the default for the rest of the data of that
well. In the Figure 6(left) for PBU-13-Well-A, we observe that the
maximum F-score is achieved for the threshold value 0.06. So if we
select this PBU observation for threshold selection step, our auto-
matic threshold value for the rest of the observation from Well-A
would be 0.06. Similarly, in Figure 6(right), we see that for PBU-24-
Well-A, the optimal threshold is 0.05.

4.4 Results

The final noise detection performance of our method depends mainly
on the selection of threshold; which can be selected using any PBU
data. To get an overall performance evaluation, for each well, we
use each PBU once for manual threshold selection. And then we
use that threshold as the fixed threshold for the rest to perform
noise detection and accuracy calculation. Finally, we calculate the
average accuracy for all the threshold. In table 1 we show the aver-
age accuracy for three different well, where we notice that, without
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(middle) Well-B, (right) Well-C [4].

using any constraint on the threshold value, the average accuracy
among three well is 71.1%. However, if we put some lower-bound
on the threshold value, it increases up to 74.25%. For blind perfor-
mance analysis, we run our method on three more oil well [4] data,
which was evaluated by domain experts to assert the usability of
our algorithm in practical application. In Figure 7 and 8, we give
a few graphical demonstration of our structured noise detection
performance.

Runtime. The run time of our method is always less than 0.05
seconds for a single PBU averaged over several runs on different
well data (using a core 15 2.70 GHz desktop computer).

5 DISCUSSION

In this section, we discuss various aspects of our proposed method.

5.1 Parameter Sensitivity

In Figure 9, for three different well, we plot histogram which shows
how many times a particular threshold value is selected from a well.
In Figure 10, we plot the overall accuracy for a range of threshold
values for three different well. In Figure 9 for Well-A, we observe
that the median of the selected threshold value is 0.06 and the noise
detection accuracy is also highest around that threshold value. This
same scenario is noted for the other wells too, which implies that
if we select an observation which bears some structured noises, it
would, in turn, produce a good enough threshold for the rest of the
observation of that well.

5.2 Interpretability

The solitary parameter of our method, the threshold value has an
intuitive interpretation which the user can readily control to tune
the outcome according to specific well characteristics. Here, a higher
threshold value implies that the method will be more selective in
labeling data segments as noise, where else a lower threshold value
implies that the algorithm will be more inclined towards detecting
a particular data segment as structured noise. Due to this inter-
pretable user control mechanism, this method can be effectively
deployed in practical field usage where the users would be able
to fine-tune the method accordingly without requiring any knowl-
edge about the underlying algorithm.
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Figure 10: Accuracy of structured noise detection perfor-
mance for various threshold values on Well-(A,B,C) [4]. The
maximum accuracy values (shown by arrows) vary across
wells.

6 CONCLUSION

In this paper, we show a practical example of using signal process-
ing techniques to improve the usability of data science method-
ologies on process monitoring dataset. Our developed method is
adaptive to the variation of structured noises, and the run-time
is not dependent on the amount of noise present in the data. The
proposed method is fast, computationally inexpensive and requires
minimal manual intervention, which makes it perfectly suitable for
practical day-to-day deployment. The solitary parameter is readily
interpretable and intuitive to fine-tune. Experimental evaluation,
as well as assessment by domain experts have validated the accu-
racy and effectiveness of the method. In future, we will use this
method to increase the accuracy of classification and clustering
tasks on additional datasets, which will demonstrate the generaliz-
ability of this method.
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