FASER: Seismic Phase Detection for Autmated Monitoring

Abstract

Seismic phase identification classifies the type of seismic wave received at a station based on the waveform (i.e., time series) recorded by a seismometer. Automated phase identification is an integrated component of large scale seismic monitoring applications, including earthquake warning systems and underground explosion monitoring. Accurate, fast, and fine-grained phase identification is instrumental for earthquake location estimation, understanding Earth’s crustal and mantle structure for predictive modeling, etc. However, existing operational systems utilize multiple nearby stations for precise identification, which delays response time with added complexity and manual interventions. Moreover, single-station systems mostly perform coarse phase identification. In this paper, we revisit the seismic phase classification as an integrated part of a seismic processing pipeline. We develop a machine-learned model FASER, that takes input from a signal detector and produces phase types as output for a signal associator. The model is a combination of convolutional and long short-term memory networks. Our method identifies finer wave types, including crustal and mantle phases. We conduct comprehensive experiments on real datasets to show that FASER outperforms existing baselines. We evaluate FASER holding out sources and stations across the world to demonstrate consistent performance for novel sources and stations.

Publication
In Proceedings of the 27th ACM SIGKDDInternational Conf on Knowledge Discovery & Data Mining(KDD), Pages 2714–2721. ACM,2021.