#### Personal Computer Hardware CS-150L Computing for Business Students

#### Instructor:

Matthew Barrick e-mail: barrick@cs.unm.edu www.cs.unm.edu/~barrick Office: Farris Engineering Center (FEC) room 106



6/15/2010



#### **Computer Tour**



http://videos.howstuffworks.com/howstuffwork2 s/23-computer-tour-video.htm

## **CPU: Central Processing Unit**

- A class of logic machines that can execute computer programs.
- UNM CS prof. just made a "CPU" with fish in Second Life®.



Intel's i486DX2 Dual Core CPU introduced in 1992

### AMD CPU, Heatsink and Fan

An object that absorbs and dissipates heat from another object by using thermal contact.

- Size,
- Thermal Conductivity,
- Surface Area,
- Air
   Movement.



In computer science, a heatsink is:

- a) A sink for cleaning computer components that gets very hot.
- b) A sink for cleaning computer components that can operate under extreme heat.
- c) An object that absorbs and dissipates heat from another object by using thermal contact.
- d) An object that generates heat.
- e) An object that locates and destroys its target by following the target's heat signature.

## **RAM - Random Access Memory**

- Random access memory (usually known by its acronym, RAM) is a type of computer data storage.
- Allow the stored data to be accessed in any order, i.e. at random. The word random thus refers to the fact that any piece of data can be returned in a constant time, regardless of its physical location and whether or not it is related to the previous piece of data.
- RAM is mostly associated with volatile types of memory where the information is lost after the power is switched off.
- However, other types of memory are RAM as well (i.e. flash memory).



#### RAM Disk

- A RAM disk is a software layer that enables applications to transparently use RAM, often a segment of main memory, as if it were a hard disk, USB Flash Drive or other secondary storage.
- Access time may be greatly improved to files held on RAM disks compared to data held on other secondary storage.
- The volatility of RAM means that data will be lost if power is lost.
- "What do you mean by 'RAM DISK is not an installation procedure' ?"

#### Quiz: RAM

#### Random Access Memory

- a) Is memory that is accessed randomly.
- b) Is memory that can be accessed in constant time.
- c) Uses random amounts of power.
- d) Is used for random games of chance.
- e) Is use for stock market prediction and modeling due to its random nature.

### **CPU: Central Processing Unit**

- CPU speed is measure in megahertz.
- A 1MHz CPU can accomplish one million CPU cycles in one second.
- Does this mean that a 2MHz CPU is twice as fast as a 1Mhz CPU?
- Not necessarily. This depends on how much work each CPU accomplishes in each clock cycle.
- The 1MHz CPU might very well be faster, in practice, than the 2Mhz CPU - if it is more efficient or can process more tasks in each CPU cycle.

### CPU: Front Side Bus (FSB)

- The Front Side Bus (FSB) is the connection between the CPU and system memory.
- The Front Side Bus operates at a speed which is a percentage of the CPU clock speed.

The faster the speed at which the Front Side Bus allows data transfer, the better the performance of the CPU.

#### **CPU: System Memory**

RAM has an access speed.

- Faster RAM will mean the CPU has to wait less often for data.
- This will, effectively, make the CPU faster.

#### RAM also has a Quantity.

The larger the RAM the less often temporary data needs to be written to the hard disk.

#### **CPU: The Cache**

- The purpose of a cache is to enable the CPU to access recently used information very quickly.
- Cache significantly affects CPU performance.
- Some caches are bigger than others. A typical L1 cache is 256Kb and a typical L2 cache is 1MB.
- Generally speaking, the larger the cache, the better the system performance boost. However, this is not always the case.
- A cache operates at a certain speed. Some caches operate at the full speed of the CPU, while others operate at half that speed or less.
- A small, full-speed cache may be much more useful than a large half-speed cache.

### CPU: Single, Dual, and Quad Core

- A multi-core processor combines two or more independent units into a single package composed of a single integrated circuit (IC)
- A dual-core processor contains two cores
- A quad-core processor contains four cores.
- The amount of performance gained by the use of a multicore processor depends on the problem being solved and the algorithms used, as well as their implementation in software.
- Dual-core systems offer a significant advantage over single-core when multi-tasking.

#### Quiz: Cache

On a computer CPU, *cache* refers to:

- a) The cost of the CPU.
- b) A relatively small amount of extra fast memory.
- c) The place where the RAM connects to the CPU.
- d) The place where the internal hard disk connects to the CPU.
- e) The place where the dual-cores connect.

### Quiz: CPU

A dual-core Central Processing Unit (CPU), or processor combines two independent cores into a single package composed of a single integrated circuit (IC). Dual-core is good for:

- a) Using your computer as a space heater.
- b) Runs most software two times faster.
- c) Doubles the clarity when playing DVDs.
- d) Doubles the computer's storage space.
- e) Is most useful for multi-tasking.

#### Powers of 2:

 $2^3 = 2 \times 2 \times 2 = 8$ 

| 2 <sup>0</sup> = | 1   |
|------------------|-----|
| 2 <sup>1</sup> = | 2   |
| 2 <sup>2</sup> = | 4   |
| 2 <sup>3</sup> = | 8   |
| 24 =             | 16  |
| 2 <sup>5</sup> = | 32  |
| 2 <sup>6</sup> = | 64  |
| 2 <sup>7</sup> = | 128 |
| 2 <sup>8</sup> = | 256 |
| 2 <sup>9</sup> = | 512 |

| 2 <sup>10</sup> = | 1,024   |
|-------------------|---------|
| 211 =             | 2,048   |
| 2 <sup>12</sup> = | 4,096   |
| 2 <sup>13</sup> = | 8,192   |
| 2 <sup>14</sup> = | 16,384  |
| 2 <sup>15</sup> = | 32,768  |
| 2 <sup>16</sup> = | 65,536  |
| 2 <sup>17</sup> = | 131,072 |
| 2 <sup>18</sup> = | 262.144 |
| 2 <sup>19</sup> = | 524,288 |

#### **Decimal Numbers (Base Ten)**



#### Binary Numbers (Base Two)

Binary with 4 bits has 
$$2^4 = 16$$
  
Permutations :  
0: 000 =  $0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$   
1: 001 =  $0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$   
2: 010 =  $0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$   
3: 011 =  $0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$   
4: 100 =  $1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$   
5: 101 =  $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$   
6: 110 =  $1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$   
7: 111 =  $1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$ 

There are 10 types of people: those who understand binary, and those who do not understand it.

#### SanDisk Flash Memory Chip



How many bytes of memory can this chip store?

#### ASCII Byte

With ASCII Character Codes, one, character takes 1 byte to encode

One byte = 8 bits with 2<sup>8</sup> = 256 Permutations: 00000000, 00000001, 00000010,...

| 9  | (tab)   |
|----|---------|
| 32 | (space) |
| 33 | !       |
| 34 | "       |
| 35 | #       |
| 36 | \$      |
| 37 | &       |

| 47 | 1 |
|----|---|
| 48 | 0 |
| 49 | 1 |
| 50 | 2 |
| 51 | 3 |
| 60 | < |
| 61 | = |

| 65  | Α |
|-----|---|
| 66  | В |
| 67  | С |
| 97  | а |
| 98  | b |
| 99  | С |
| 100 | d |

| 232 | è |
|-----|---|
| 233 | é |
| 234 | ê |
| 235 | ë |
| 241 | ñ |
| 252 | ü |

#### **Extended Character Sets**

- Extended Character Sets often take two bytes.
- Extended Character Sets can include colors, fonts, styles, Chinese, Japanese, and Arabic Characters
- We saw that 1 byte is 8, bits and has 256 permutations.
- How many permutations do 2 bytes have?

# What is the first sign of a computer getting too old?

Memory Problems