CS-150L Computing for Business Students Loan Amortizations

Instructor:
Matthew Barrick
e-mail: barrick@cs.unm.edu www.cs.unm.edu/~barrick
Office: Farris Engineering Center (FEC) room 106

PMT(rate, nper, -pv)

$$
P=\frac{r a t e \times p v \times(1+\text { rate })^{n p e r}}{(1+\text { rate })^{n p e r}-1}
$$

Lab 7: Due Sunday, March 28

- Understanding how a loan works.
- Loan Amortization Schedules

■ Excel PMT() function

- Textbook equation reading and translating
- The meaning of Biweekly and Semimonthly.
- The meaning of periodic rate and how it relates to an APR (Annual Percentage Rate).
- Compute a running tally of interest or principal paid-to-date.
- Use of the EOMONTH() function.

What is the Value of Each Equation?

\[

\]

Empty and Space in Equations

	A	B	C
1	Quantity	Unit Cost	Total Cost
2	2	$\$ 2.50$	$=\mathrm{A} 2^{*} \mathrm{~B} 2$
3	5	$\$ 1.50$	
4		$\$ 4.95$	
5		$\$ 3.00$	
6	1	$\$ 7.25$	

Why is does
C3 display $\$ 0.00$ and C5 display \#VALUE?

	A	B	C
1	Quantity	Unit Cost	Total Cost
2	2	$\$ 2.50$	$\$ 5.00$
3	5	$\$ 1.50$	$\$ 7.50$
4		$\$ 4.95$	$\$ 0.00$
5		U	$\$ 3.00$
\#VALUE!			
6	1	$\$ 7.25$	$\$ 7.25$

Space in Range of SUM Function

	A	B	C		
1	Quantity	Unit Cost	Total Cost		
2	2	\$2.50	\$5.00		
3	5	\$1.50	\$7.50		
4		\$4.95	\$0.00		
5		\$3.00	\#VALUE!	B	C
6	$=S \cup M(A 2: A 6)$		\$7.25 ity	Unit Cost	Total Cost
7			2	\$2.50	\$5.00
			$3 \quad 5$	\$1.50	\$7.50
			4	\$4.95	\$0.00
SUM(A2:A6) ignores the Space Character			$5 \longrightarrow-$	\$3.00	\#VALUE!
		\square	$6 \quad 1$	\$7.25	\$7.25
			$7 \longrightarrow 8$	19.2	\#VALUE!

Which are Correct?

	A	B
1	Name	Lab 1
2	Ori	100%
3	Oin	78%
4	Bofur	63%

Enter an Excel equation that calculates the average of all the grades for lab 1 and will fill across correctly. The equation must not use any constants.
\rightarrow b) $=$ AVERAGE(B2:B4)
c) $=$ AVERAGE $(\$ B 2: \$ B \$ 4)$
d) $=B 2+B 3+B 4 / 3$
e) $=(B 2+B 3+B 4) / 3$
f) $=B 2 / 3+B 3 / 3+B 4 / 3$
$g)=\operatorname{SUM}(B 2: B 4) / C O U N T(B 2: B 4)$
When no weights are given, it can be assumed that all items to be averaged have the same weight.

Quiz: Average()

What is the value of $=A V E R A G E(A 1+B 1)$?
a) 150
b) 75
c) 50
d) 100
e) 75%

Quiz: Filling Right

	A	B	C	D
1	Name	Lab 1	Lab 2	Lab 3
2	Ori	100%	95%	93%
3	Oin	78%	77%	73%
4	Bofur	63%	44%	56%

Which equation calculates the average of all the grades for lab 1 and can be filled right to correctly calculate the average grades in columns C through D . The equation must not use constants.
a) $=$ AVERAGE(B2+B3+B4)
b) $=$ AVERAGE $(\$ B \$ 2+\$ B \$ 3+\$ B \$ 4)$
c) $=$ SUM $(\$ B \$ 2: \$ B \$ 4) / 3$
d) $=\operatorname{AVERAGE}(\mathrm{B} 2: B 4)$
e) $=$ AVERAGE $(\$ B \$ 2: \$ B \$ 4)$

Business Related Time Intervals

Usually, all of these are equally spaced intervals.
Biannual: Once every two years.
Semiannual: Twice each year.
Quarterly: Four times a year, at three-month intervals.
Bimonthly: Once every two months (6 times per year).
Monthly: 12 times per year.
Semimonthly: Twice each month (24 times per year). Biweekly: Once every two weeks (26 times per year). Weekly: Every week, 52 times per year.

Calculating Periodic Interest Rate from APR

Periodic Interest Rate $=\frac{A P R}{n}$
Where $A P R$ is the Annual Percentage Rate and n is the number of periods in one year.

For a daily periodic interest rate, most lending institutions use an amortized base of 365 .

Examples: APR = 12.99\%
Monthly Periodic Rate $=12.99 \% / 12=1.0825 \%$
Daily Periodic Rate $=12.99 \% / 365=0.0356 \%$

Quiz: Periodic Interest Rates

	A	B
1	Loan Balance:	$\$ 1,000.00$
2	APR:	15.99%
3	Monthly Periodic Rate:	$=$

Witch Excel equation will give the Monthly Periodic Interest Rate in the above spreadsheet?
a) $=\mathrm{B} 2 / \mathrm{B} 1$
b) $=\mathrm{B} 1 / \mathrm{B} 2$
c) $=B 2 / 12$
d) $=(\mathrm{B} 2 / 12)$ * B 1
e) $=\mathrm{B} 2 / 12$ * B 1

Multiplying Every Cell By a Constant

1. Place the constant in a cell.
2. Copy the value in the cell.
3. Select all the cells you want to Multiply by the constant.
4. Paste Special:

Excel 2003: Edit Menu $\boldsymbol{\rightarrow}$ Paste Special $\boldsymbol{\rightarrow}$
Operation: Multiply.
Excel 2007: Home Ribbon \rightarrow Paste \rightarrow Paste Special \rightarrow Operation: Multiply.

Exponents

$5^{2}=5 \times 5=25$ (math notation)
$5^{\wedge} 2=5^{*} 5=25$ (Excel notation)
$2^{5}=2 \times 2 \times 2 \times 2 \times 2=32$ (math notation)
$2^{\wedge} 5=2^{*} 2^{*} 2^{*} 2^{*} 2=32$ (Excel notation)

Quiz: Exponents

- In Excel, what is the value of $=3^{\wedge} 3$
a) 3
b) 6
c) 9
d) 12
e) 27

Use of Named Cells

	A	B
1	APR	25%
2	Principle	1000
	Interest, compounded	
3	annually, after 1 year:	$=\mathrm{B} 2 * \mathrm{APR}$

- In Excel, the user can assign a name to a cell or a range of cells.
- Such names can be used in equations in place of absolute cell references.

Named Cells: Excel 2007

1. Select the cell you want to name.
2. Right click in the selected cell and select "Name a Range..."
3. Enter the name
4. Select the Scope.
5. Click OK.

Name Manager

Named Cells: Excel 2003

区 Microsoft Excel - CS-150-Exam-2-Excel.xls

Writing a Math Equation in Excel

The Excel PMT(rate, nper, -pv) function calculates the periodic payment, P, on a loan by the formula:

$$
P=\frac{r a t e \times p v \times(1+r a t e)^{n p e r}}{(1+r a t e)^{n p e r}-1}
$$

- rate: Periodic interest rate.
- nper: Total number of periods.
- pv: Principle value of loan
$=\left(\right.$ rate $^{*} \mathrm{pv}^{*}(1+\text { rate })^{\wedge}$ nper $) /\left((1+\text { rate })^{\wedge}\right.$ nper -1$)$

Quiz: Math to Excel

$$
P V=F V \div(1+i)^{n}
$$

This is the Present Value equation given in the Financial Accounting Textbook (MGMT 202). Which is the correct translation into Excel notation?

$$
\begin{aligned}
& a)=(F V) /\left(1+i^{\wedge} \wedge n\right) \\
& b)=\left(F V /\left(1+i^{\wedge} n\right)\right) \\
& c)=(F V /(1+i \wedge n)) \\
& d)=\left(F V /\left(1+\left(i^{\wedge} n\right)\right)\right) \\
& e)=F V /\left((1+i)^{\wedge} n\right)
\end{aligned}
$$

Quiz: Math to Excel

The profitability equation for earnings per share given in the Financial Accounting Textbook (MGMT 202) is:
Earnings_per_share $=\frac{\text { Net_income }- \text { Preferred_stock_divilends }}{\text { Average_common_shares_outstandng }}$ $E p S=\frac{N I-P S D}{A C S O}$

Which Excel equation is a correct translation?
a) $=(\mathrm{NI}-\mathrm{PSD}) / \mathrm{ACSO}$
b) $=\mathrm{EpS}-((\mathrm{NI}-\mathrm{PSD}) / \mathrm{ACSO})$
c) $=\mathrm{NI}-\mathrm{PSD} / \mathrm{ACSO}$
d) $=(\mathrm{NI}-\mathrm{PSD} / \mathrm{ACSO})$
e) $=\mathrm{EpS}+((\mathrm{NI}-\mathrm{PSD} / \mathrm{ACSO})$

Running Totals

	A	B	C	D
1	Trans \#	Date	Payment	Payments Made to Date
2	1	4-Feb	\$ 23.00	=SUM(\$C\$2:C2)
3	2	7-Feb	\$ 14.20	\$ 37.20
4	3	14-Feb	\$ 19.95	\$ 57.15
5	4	$15-\mathrm{Feb}$	\$ 10.00	\$ 67.15
6	5	22-Feb	\$ 15.30	\$ 82.45
7	6	27-Feb	\$ 12.45	\$ 94.90
8	Total P	ts:	\$ 94.90	

Running Total:
Sum from Beginning (absolute) through Current (relative)

Quiz: Running Totals

	A	B		C	
1	Date	Payments		Payments Made to Date	
2	3/4/08	\$	57.00	\$	57.00
3	4/2/08	\$	45.00	\$	102.00
4	5/7108	\$	23.00	\$	125.00
5	6/1/08	\$	15.00	\$	140.0
6	7/3/08	\$	98.00	\$	238.00

Which Excel Equation can be entered in cell C2 and filled down from C2:C6 to correctly calculate the Payments Made to Date?
a) $=\operatorname{SUM}(\$ C \$ 2: \$ C \$ 6)$
b) $=\operatorname{SUM}(\$ B \$ 2: B 2)$
c) $=\operatorname{SUM}(\mathrm{B} 2: B 6)$
d) $=\operatorname{SUM}(\$ B \$ 2: B 6)$
e) $=\operatorname{SUM}(\mathrm{C} 2: \mathrm{C} 6)$

Alternate Solution:

$$
\begin{aligned}
& \mathrm{C} 2:=\mathrm{B} 2 \\
& \mathrm{C} 3:=\mathrm{C} 2+\mathrm{B} 3
\end{aligned}
$$

Excel PMT() function

- PMT (PayMenT) for a loan based on constant payments and a constant interest rate.

■ Syntax: PMT(rate, nper, -pv)

- rate: Periodic interest rate (APR divided by the number of periods per year),
- nper: Total number of periods during the term of the loan,
- pv: Principle value of loan.

PMT Example

- A five year loan is created on an original principal of $\$ 5,000$ at a fixed APR of 6.75% compounded monthly.

	A	B	C	D	E	F
1	$\begin{aligned} & \frac{ᄃ}{0} \\ & \stackrel{3}{\bar{D}} \end{aligned}$	pV	Original Principle of Loan		\$5,000	
2			Fixed APR		6.75\%	
3			Period of Compounding		1	month
4			Total Loan Term		5	years
5						
6	$\begin{aligned} & \text { n } \\ & \frac{0}{0} \\ & \hline \frac{0}{J} \\ & \frac{0}{0} \\ & 0 \end{aligned}$		Number of Periods Per Year		12	months/year
7		rate	Periodic Interest Rate	E2/E6	0.5625\%	
8		nper	Total Number of Periods of the loan	E4*E6	60	months
9		p	Periodic Payment	PMT(E7,E8,-E1)	\$98.42	
10			Total Amount of all Payments	E9*E8	\$5,905.04	
11			Total Finance Charge	E10-E1	\$905.04	

Auto Loan Scenarios

	A	B	C	D	E	F
1	First Bank of the Milky Way 1 Mandelbrot Drive, Tombal Station, USA, Mars					
2	Price of 2008 Toyota Prius	\$19,692.00				
3	Manufacture's Rebate	\$1,000.00				
4	Down Payment	\$0.00	\$0.00	\$0.00	\$0.00	\$2,000.00
5	Amount to Finance	\$18,692.00	\$18,692.00	\$18,692.00	\$18,692.00	\$16,692.00
6	Term (in years)	4	4	4	6	6
7	Annual Percentage Rate (APR)	6.10\%	6.10\%	6.10\%	7.60\%	7.60\%
8	Number of Payments per Year	12	24	26	12	12
9	Periodic Interest Rate	0.5083\%	0.2542\%	0.2346\%	0.6333\%	0.6333\%
10	Total Number of Payments	48	96	104	72	72
11	Periodic Payment (PMT)	\$439.84	\$219.67	\$202.76	\$324.09	\$289.42
12	Periodic Payment (equation)	\$439.84	\$219.67	\$202.76	\$324.09	\$289.42
13	Total of Payments	\$21,112.30	\$21,088.70	\$21,086.88	\$23,334.67	\$20,837.92
14	Finance Charge	\$2,420.30	\$2,396.70	\$2,394.88	\$4,642.67	\$4,145.92

Quiz: PMT(rate, nper, -pv)

A five year loan is created on an original principal of \$5,000 at a fixed APR of 6.75% compounded monthly.

	A	B	C	D	E	F
1	$\begin{gathered} \stackrel{ᄃ}{0} \\ \stackrel{3}{10} \end{gathered}$	$p v$	Original Principle of Loan		\$5,000	
2			Fixed APR		6.75\%	
3			Period of Compounding		1	month
4			Total Loan Term		5	years
5						
6			Number of Periods Per Year		12	months/year
7		rate	Periodic Interest Rate	E2/E6	0.5625\%	
8		nper	Total Number of Periods of the loan	E4*E6	60	months
9		p	Periodic Payment		\$98.42	
10			Total Amount of all Payments		\$5,905.04	
11			Total Finance Charge		\$905.04	

The Periodic Payment is given by:
a) $\operatorname{PMT}(E 2, E 4,-E 1)$
b) $\operatorname{PMT}(E 7, E 8,-E 1)$
c) $\operatorname{PMT}(E 2, E 6,-E 1)$
d) $\operatorname{PMT}(E 7, E 6,-E 1)$

Quiz: Total Finance Charge

A five year loan is created on an original principal of \$5,000 at a fixed APR of 6.75% compounded monthly.

	A	B	C	D	E	F
1	$\stackrel{\substack{\stackrel{-}{0} \\ \stackrel{\rightharpoonup}{0}}}{ }$	$p \vee$	Original Principle of Loan		\$5,000	
2			Fixed APR		6.75\%	
3			Period of Compounding		1	month
4			Total Loan Term		5	years
5						
6	$\begin{aligned} & \frac{0}{5} \\ & \frac{0}{0} \\ & \frac{0}{J} \\ & \frac{0}{0} \\ & \hline 0 \end{aligned}$		Number of Periods Per Year		12	months/year
7		rate	Periodic Interest Rate	E2/E6	0.5625\%	
8		nper	Total Number of Periods of the loan	E4*E6	60	months
9		p	Periodic Payment		\$98.42	
10			Total Amount of all Payments		\$5,905.04	
11			Total Finance Charge		\$905.04	

The Total Finance Charge is given by:
a) $\mathrm{E} 9-\mathrm{E} 10$
b) E10 - E9
c) E9 * E10
d) E9 * E8
e) $\mathrm{E} 10-\mathrm{E} 1$

Compound Interest

The account balance (interest plus principal) is calculated at the end of each period.
During the next period, interest is calculated on the full balance at the end of the last period.

If $\$ 100$ was borrowed for 2 years at an annual periodic interest rate of 10%, the interest compounded annually would be:

$$
\$ 100 \text { * } 10 \% \text { * } 1 \text { period = } \$ 10 \text { (in the 1st period). }
$$

Balance at the end of the first period: $\$ 100+\$ 10=\$ 110$.

$$
\$ 110 \text { * } 10 \% \text { * } 1 \text { period }=\$ 11 \text { (in the } 2^{\text {nd }} \text { period). }
$$

Thus, the total interest in the loan is:

$$
\$ 10.00+\$ 11.00=\$ 21.00
$$

Simple Interest vs Compound Interest

Simple interest =
[Original Principle] * [Periodic Rate] * [The Number of Periods]
Compound Interest For One Period =
[Current Balance] * [Periodic Rate]

Setting Up a Worksheet form Words

On January 1, 2008, Austin took out a loan of $\$ 1000.00$ at an interest rate of 12.00% APR compounded monthly. He has a minimum payment of $\$ 100.00$ due the first of every month starting February. He always makes his minimum payment. What is the balance of his account on March 1, 2008?

- Extract the information from the paragraph,
- Organize the information in a spreadsheet with assumptions clearly separated from calculations,
- Solve the problem within the spreadsheet such that changing any of the assumptions automatically changes the results.
- Format a assumptions, calculations and results for clarity and easy readability.

Words to Worksheet - Set up

On January 1, 2008, Austin took out a loan of $\$ 1000.00$ at an interest rate of 12.00% APR compounded monthly. He has a minimum payment of $\$ 100.00$ due the first of every month starting February. He always makes his minimum payment. What is the balance of his account on March 1, 2008?

	A	B	C	D	E	F
1		Amount Financed	\$1,000.00			
2		APR	12.00\%			
3		Monthly Payment	\$100.00			
4		Date of Loan	1/1/2008			
5						
6	Periodic Interest Rate		1.0000\%			
7						
8		Date	Payment	Finance Charge	Amount Applied to Principal	Principal Balance
9		February 1, 2008	\$100.00			
10		March 1, 2008	\$100.00			

On a standard auto loan, interest is accrued on

1. the loan balance
2. the payment made this period
3. the total of all payments made since the start of the loan
4. the borrower's salary
5. the principle paid this period

Finance Charge

	A	B	C	D	E	F
1		Amount Financed	\$1,000.00			
2	흘	APR	12.00\%			
3	¢	Monthly Payment	\$100.00			
4	<	Date of Loan	1/1/2008			
5						
6		Periodic Interest Rate	1.0000\%			
7						
8		Date	Payment	Finance Charge	Amount Applied to Principal	Principal Balance
9		February 1, 2008	\$ 100.00	\$ 10.00		
10		March 1, 2008	\$ 100.00	=F9*\$C\$6		

- Row 1: =C1*C6 or =\$C\$1*\$C\$6

■ Row 2: =F9*\$C\$6 --- it is ok that F9 is empty.

Amount Applied to Principal

	A	B	C	D	E	F
1	$\stackrel{\square}{\square}$	Δm nuint Einamad	Q 1 nnn n n			
8		Date	Payment	Finance Charge	Amount Applied to Principal	Principal Balance
9		February 1, 2008	\$100.00	\$10.00	\$90.00	
10		March 1, 2008	\$100.00	\$0.00	\$100.00	

■ Row 1 (not special - fill it down): =C9-D9

- The value showing in E11 is incorrect because the Finance Charge in F10 is incorrect until the Principal Balance equation is done.
- When Principal Balance equation is done, the other values will update to correct values.

Principal Balance

	A	B	C	D	E	F
1		Amount Financed	\$1,000.00			
2		APR	12.00\%			
3		Monthly Payment	\$100.00			
4		Date of Loan	1/1/2008			
5						
6	Periodic Interest Rate		1.0000\%			
7						
8		Date	Payment	Finance Charge	Amount Applied to Principal	Principal Balance
9		February 1, 2008	\$100.00	\$10.00	\$90.00	\$910.00
10		March 1, 2008	\$100.00	\$9.10	\$90.90	\$819.10
- Row 1:			E9	or $=\$ C \$ 1-E 9$		
	Ro	W 2: =F9	-E10			

Quiz:

	A	B	C
1	APR	6.10%	
2			
3	Date	Interest	Balance
4	$3 / 1 / 2008$		$\$ 550.00$
5	$4 / 1 / 2008$	$=$	

Which equation entered in B5 will give the interest
(compounded monthly) charged for the month of March?
a) ($\$ \mathrm{~B} \$ 1 / 12)^{*} \mathrm{C} 4$
b) $(\$ \mathrm{~B} \$ 1 / 12)$ * $(\mathrm{A} 5-\mathrm{A} 4)$
c) $(\$ B \$ 1 / 12)$ * $(A 4-A 5)$
d) $(\$ \mathrm{~B} \$ 1 / 12) *(\mathrm{~A} 4-\mathrm{A} 5) * \mathrm{C} 4$
e) $\$ B \$ 1^{*} C 4$

Quiz:

	A		B	C
1	Daily Periodic Interest Rate:	D		
2				
	Number			
3	of Days	Balance	Interest	
4	41	$\$ 1,257.52$		

The simple interest on the balance in cell B4 over a period of days given in cell A4 can be calculated by?
a) $=\$ \mathrm{D} \$ 1 * \mathrm{~B} 4$
b) $=\$ \mathrm{D} \$ 1+\mathrm{B} 4+\mathrm{A} 4$
c) $=\$ D \$ 1^{*} B 4^{*} \mathrm{~A} 4$
d) $=\$ \mathrm{D} \$ 1+\mathrm{B} 4^{*} \mathrm{~A} 4$
e) $=\$ \mathrm{D} \$ 1 * \mathrm{~B} 4+\mathrm{A} 4$

The Current Balance in an Account

In most accounts, loans, annuities, checking accounts, cell phone accounts, there are 3 components:

1) Account Balance at the end of previous period.
2) Account Activity during the current period. Depending on the type of account, may includes such items as:

- Interest accrued this period
- Interest charged this period
- Fees charged this period
- Deposits made this period
- Withdrawals or purchases made this period.

3) Account Balance at end of the current period.

Common Account Balance Layout

	A	B	C	D
1	Date of Period's End	Money Added to Balance this Peroid	Money Subtracted from Balance this Period	Balance at End of Period
2				
3				
4				Previous Period
5	Current Period			
6				
7				
8				

