
CS 152
Computer Programming

Fundamentals
Towers of Hanoi

Brooke Chenoweth

University of New Mexico

Spring 2024



Towers of Hanoi

• Puzzle invented by the French mathematician
Èdouard Lucas in 1883.

• Stack of discs start on one of 3 rods. The
objective of the puzzle is to move the entire
stack to another rod, obeying the following
simple rules:

• Only one disk can be moved at a time.
• Each move consists of taking the upper disk from

one of the stacks and placing it on top of another
stack i.e. a disk can only be moved if it is the
uppermost disk on a stack.

• No disk may be placed on top of a smaller disk.

• http://www.mathsisfun.com/games/

towerofhanoi.html

http://www.mathsisfun.com/games/towerofhanoi.html
http://www.mathsisfun.com/games/towerofhanoi.html


Questions

• How many moves does it take to solve the
puzzle for different numbers of disks?

• Which specific disks do you need to move to
solve the puzzle?

• Can you write a program to generate the list of
moves?



Solving the puzzle

• To move a single disc from the source rod to
the destination rod, just move the disc.

• To move a stack of discs from the source to
the destination:

1. Move all but one disc from the source to the
helper rod.

2. Move the single disc from source to destination.
3. Move the discs from the helper to the destination.



Code – move

We’ll just print out each move using the following
method. One could imagine replacing this method
with something that operates a robot arm if you
wanted to solve the problem using physical discs.

public static void move(char from , char to) {

System.out.println(from + " -> " + to);

}



Code – starting off
To solve the problem for n discs, we want to move
from rod A to rod C using rod B as the helper.

public static void hanoi(int n) {

hanoi(n, ’A’, ’C’, ’B’);

}



Code – recursive method

public static void hanoi(int n, char from ,

char to, char help) {

if(n == 1) {

move(from , to);

} else {

hanoi(n-1, from , help , to);

move(from , to);

hanoi(n-1, help , to, from);

}

}



Explore the code

• Try running the code for different problem sizes
and see what happens.

• Add output to the beginning and end of the
recursive method to see which arguments are
passed to the method.

• Try running the code in the debugger, add
breakpoints, and explore the stack trace.



Challenge

• Instead of printing out the moves, I would like
to put them all in an array.

• How would I do this?


