
CS 251 Intermediate Programming
Lab 4: Exceptions

Brooke Chenoweth

Spring 2024

This is a small quick assignment designed to get you more familiar with creating and
using exceptions.

Problem description

Let’s consider a bank account. What would we need to represent one as a class? At the
very least, we probably should have a bank account number (so we can tell my bank account
apart from yours, even if we currently have the same balance) and a value for the current
balance. We probably should have accessors for those fields.

What should we be able to do with a bank account? Well, we want to be able to put
money in and take money out, so we should have deposit and withdraw methods that will
update the current balance by some amount. The bank generally frowns on withdrawing
more money than is in the account, so if someone tries to do that, we’ll throw an exception.
(Of course, all responsible account holders would check the balance before taking out some
cash, but we don’t want this exceptional case to sneak by.)

Also, we probably shouldn’t be able to deposit or withdraw a negative amount. (With-
drawing a negative amount to increase your account balance would be frowned upon at most
banks.) This is something that could have been checked for by the calling program, but
to be extra careful we will throw a particular unchecked exception from the standard li-
braries called an IllegalArgumentException if we try to pass a negative amount into those
methods.

What do you need to do?

1. Write a InsufficientFundsException class.

• This class should extend Exception, since it is going to be a checked exception.

• The constructor should take the amount of the shortfall (as a double) and store
it in a member variable.

• We want to see some sort of message like “You need more money!” in the stack
trace, so call a Exception constructor that takes a message by using the super

1

keyword at the beginning of your class’s constructor and pass it an appropriate
message string.

• The class should have a getShortfallAmount method to access the shortfall
amount given in the constructor. This method should return a double.

2. Write a BankAccount class.

• The constructor should take a int for the account ID number. Bank accounts
should initially have a balance of zero.

• Provide a getAccountNumber method to return the int account number.

• Provide a getBalance method to return the current account balance. This value
should be a double.

• The class should have a depositFunds method that takes a double amount and
adds it to the current account balance. This method returns nothing.

If the amount attempted to deposit is negative, this method will throw an
IllegalArgumentException. Since this is an unchecked exception type, your
method does not need to explicitly state that it throws that type of exception.

• The class should have a withdrawFunds method that takes a double amount and
subtracts it from the current account balance. This method returns nothing.

If the amount attempted to withdraw is greater than the current account balance,
this method will throw an InsufficientFundsException.

If the amount attempted to withdraw is negative, this method will throw an
IllegalArgumentException. Since this is an unchecked exception type, your
method does not need to explicitly state that it throws that type of exception.

3. Test your classes.

• I have provided you with a BankingTest class to test your BankAccount imple-
mentation. It creates a bank account, deposits amount of money, and attempts
to withdraw three easy payments of $19.95 (just can’t resist those infomercials!),
printing out the balance along the way.

• If you call BankingTest with a large enough initial deposit value, the program
will run without error and you’ll see something like the following.

$ java BankingTest 100.00

Account 101 balance = $100.00

Withdraw payment 1 of $19.95

Account 101 balance = $80.05

Withdraw payment 2 of $19.95

Account 101 balance = $60.10

Withdraw payment 3 of $19.95

Account 101 balance = $40.15

Finished payments

Account 101 balance = $40.15

2

Done banking for now

Account 101 balance = $40.15

• On the other hand, if you don’t deposit enough funds, you won’t be able to
withdraw all the money and your BankAccount will throw an exception.1

$ java BankingTest 25.00

Account 101 balance = $25.00

Withdraw payment 1 of $19.95

Account 101 balance = $5.05

Withdraw payment 2 of $19.95

Sorry, but you are short $14.90

InsufficientFundsException: You need more money!

at BankAccount.withdrawFunds(BankAccount.java:26)

at BankingTest.main(BankingTest.java:53)

Done banking for now

Account 101 balance = $5.05

Notice that we don’t actually change the bank balance when we run short of
funds.

• If you try to deposit a negative amount, you won’t even be able to get started
banking because of the illegal argument.

$ java BankingTest -10.0

Exception in thread "main" java.lang.IllegalArgumentException:

attempted to deposit negative amount: -10.0

at BankAccount.depositFunds(BankAccount.java:11)

at BankingTest.main(BankingTest.java:35)

• Try testing your classes in other ways.

– What happens if you make more than one BankAccount?

– What about if you alternate some deposits and withdrawals?

– What other cases should we be checking?

• Do note that the BankingTest program will not actually work until you have
implemented BankAccount and InsufficientFundsException.

Turning in your assignment

Once you are done with your assignment, use Canvas to turn in BankAccount.java and
InsufficientFundsException.java. (Do not submit BankingTest.java, since you should
not have changed it.2)

1Exact details of the error message and specific line numbers in the stack trace will depend upon your
BankAccount implementation details. I’m not expecting you to throw your exception on the same line in
BankAccount.java as I did in my version.

2Well, you can change it much as you like as part of your testing, but your code should still work with
the original version of the file.

3

