
CS 251
Intermediate Programming

Inheritance

Brooke Chenoweth

University of New Mexico

Spring 2024

Inheritance
We don’t inherit the earth from our parents,
We only borrow it from our children.

What is inheritance?

• Just as for humans, sub classes (children)
inherit certain properties from their parents.

• Object Oriented - Doesn’t happen if no objects

• One mother/father (super) object

• Child inherits all public and protected

members

Inheritance
It is the same thing as having parents!

• You get part of what they have, but you can
form your own way.

• If there are parents, there are usually
grand-parents too. You get something from
them as well. . .

Everything is an Object

• The Object class is the Adam/Eve of Java.

• All classes are subclasses of the Object class

• Therefore they inherit certain methods (such as
toString())

• Object.toString() just uses the type and
hashcode of the object

Subclasses extend parents. . .
In java, all classes extend at least the Object class
(implicitly).
To extend means to get certain properties from
your parent

extends example
An example:

public class ParentClass {

public void print() {

System.out.println("Hello");

}

}

public class ChildClass extends ParentClass {

public void tryit() { print (); }

public static void main(String [] argv) {

ChildClass test = new ChildClass ();

test.tryit ();

}

}

ChildClass inherited print() from ParentClass!

All classes extend Object

If no parent class is given, parent is Object

public class Foo {

is equivalent to

public class Foo extends Object {

this and super

There are two keywords that are often used with
inheritance. They are:

• this – a reference to the current object
instance. Ex: to address an instance variable
you may always do: this.variable

• super – a reference to the parent part of this
object instance. Use super to access methods
that you are overriding in the parent.

• Note! Calls to super() constructors must always
be the first line in your constructor (if you want
to)!

• You can also call other constructors in your object
such as this().

Overriding – Overloading

• A class can (as you know) define methods

• When one class inherits another, the derived
class can “override” a method in the base class.

• Overriding methods must have the same name,
same number of parameters, and same type of
all parameters

• Different from overloading (where types, or
number of parameters must differ)

• If an overriding method is specified as
public final void methodName()

it can not be overridden.

Overriding – Overloading cont. . .

• Methods can be both overridden and
overloaded at the same time.

• Fields can not be overridden, only hidden

• Only accessible methods can be overridden

• Static members are always hidden (so
impossible to override)

Reminder: Access modifiers

private Only this class

package-private No modifier. This class and others
in same package.

protected This class and its subclasses (and same
package)

public Accessible to all

Overriding – Annotation

• The compiler can help check that you are doing
what you think you are doing.

• The @Override annotation tells the compiler
that you intend to override a method from the
superclass.

• If you don’t, compiler will complain.

public class Bar extends Foo {

@Override

public int fooMethod () {

}

}

Multiple types

• A subclass can be assigned to a variable of the
supertype class.

• If you want to check if it’s one or the other,
you can use the instanceof keyword to check:

if (obj instanceof MyClass) {

// if true , can safely cast here

• instanceof works with interfaces, too!

Pattern matching with instanceof

Let’s assume with have a Shape interface,
implemented by Rectangle

if(shape instanceof Rectangle) {

Rectangle r = (Rectangle)shape;

// do Rectangle stuff here

}

The instanceof check tells us we can safely cast.

As of JDK 17, we can simplify this test plus cast
like so:

if(shape instanceof Rectangle r) {

// do Rectangle stuff here

}

Pattern matching with instanceof

Let’s assume with have a Shape interface,
implemented by Rectangle

if(shape instanceof Rectangle) {

Rectangle r = (Rectangle)shape;

// do Rectangle stuff here

}

The instanceof check tells us we can safely cast.
As of JDK 17, we can simplify this test plus cast
like so:

if(shape instanceof Rectangle r) {

// do Rectangle stuff here

}

Final classes and methods
Classes and methods that are defined as final
cannot be extended or overridden respectively. Can
be useful if you’re sure that you don’t want your
class extended.

• Increased security

• Guarantees specific implementation

• Generally should only call final helpers in
constructors.

Abstract Classes

• A method header without implementation is
called an abstract method

• Any class containing an abstract method,
must be declared as an abstract class

• Abstract classes can not be instantiated

• Classes extending the abstract class must
provide implementation for the abstract
methods.

Abstract class example
We can partially implement an abstract parent. . .
public abstract class GraphicObject {

private int x, y;

public void moveTo(int newX , int newY) {

// change x, y here

}

public abstract void draw ();

}

. . . and finish implementing in a concrete child type
public class Circle extends GraphicObject {

public void draw() {

// draw a circle

}

}

Interfaces

• An interface is the extreme abstract class,
containing only method headers, and no
implementations at all.1

• The interface, is a specification of the interface
between a programmer and a class

• Any class that implements an interface, must
provide implementations for all methods in the
interface (unless it’s an abstract class)

• Interfaces and abstract classes are formal
specifications of the interaction between classes
(without implementation)

1Java 8 changes this a bit with default implementations

Example interfaces

• Comparable – Imposes a natural ordering of
objects implementing it

• Collection – Common interface for all
collections (implementing classes: ArrayList,
LinkedList, Vector, etc. . .

• Iterator – Provides a serialization of
collections

• List – Defines methods common for lists

• etc. . .

• Note! You are likely to have to implement
some java interfaces in upcoming assignments

Abstract Classes, Interfaces, & Inheritance

• A class can only extend one (1) class
(abstract or concrete)

• A class can implement any number of interfaces

• Abstract classes extending abstract classes do
not need to implement abstract methods in the
superclass. However, concrete classes
extending the derived abstract class must
implement all abstract methods in both
superceding abstract classes.

Interfaces can inherit, too!

public interface Foo {

void fooMethod ();

}

public interface Bar extends Foo {

void barMethod ();

}

public class Baz implements Bar {

public void fooMethod () {

}

public void barMethod () {

}

}

Another inheritance example

public class Student {

public String toString () {

return "I’m a student";

}

}

public class Undergrad extends Student {

public String toString () {

return super.toString () + " in college!";

}

}

I’m curious. . .
Think of our two classes Student and Undergrad

• In the case of:
Student myStudent = new Undergrad();

• How does Java know how to execute the
overridden method toString() in Undergrad

when the programmer calls:
myStudent.toString()

especially in the case where the Student class
was compiled before Undergrad?

Dynamic (Late) Binding

• Compiler puts in a flag saying “Use applicable
definition for method toString()” when
compiling, since it doesn’t know what
definition it will use later.

• Method definition is chosen based on the
current object’s place in the inheritance chain,
not by the type of the variable containing it!

• Even typecasts will not change this behavior:
Student myStudent = (Student) new Undergrad();

myStudent.toString() will still call the Undergrad
toString() method.

Polymorphism

the quality or state of existing in or assum-
ing different forms
In object oriented programming, the term is
used to describe a variable that may refer to
objects whose class is not known at com-
pile time, and which respond at run time
according to the actual class of the object
to which they refer.

Definitions from dictionary.com

dictionary.com

Dynamic Binding vs. Polymorphism

• Sounds like the same thing. . .
• That’s because it is because both phrases
describe the same process but from different
perspectives:

• Polymorphism is at the object level (for the
programmer)

• Dynamic Binding is the compiler’s way of realizing
polymorphism

• Sometimes used interchangably. Note though,
original definiton of polymorphism was only
referring to type generality, but has been
redefined for object oriented programming.

instanceof

• Can be used to see if instances were created
from the same class.

• Useful when comparing objects - makes for a
better comparison

• Syntax:
<object> instanceof <type>

• Add to equals or compareTo method to
ensure that there’s class correspondence.

Inheritance wrapup. . .

• Defines relationships between categories of
objects

• Allows for increasingly specialized
implementations without having to
reimplement (inherited methods)

• Enforced by Abstract methods and interfaces –
that define the allowable use

