
CS 251
Intermediate Programming

More on classes

Brooke Chenoweth

University of New Mexico

Spring 2025



Empty Class

public class EmptyClass {

}

• Has inherited methods and fields from parent
(in this case, Object)

• Has default constructor



Empty Interface

public interface EmptyInterface {

}

• Often used to “tag” a class.
• Java API has several of these marker interfaces

• java.lang.Cloneable

• java.io.Serializable

• java.util.EventListener



Nested classes
public class OuterClass {

private class InnerClass {

}

public static class StaticNestedClass {

}

}

• A nested class is a member of its enclosing
class.

• Can be private, protected, private, or package
private.

• Non-static nested classes are known as inner
classes

• Inner classes have access to other members of
enclosing class, even if private.



Why use Nested Classes?

• Logically group classes used in only one place.
Nesting a “helper class” keeps it together with
the class that uses it.

• Encapsulation. Nested class can access private
members of outer class. Nested class also can
be private.

• More readable and maintainable code. Nesting
small classes within top-level classes places the
code closer to where it is used.



Static Nested Classes

• Behaves like a top level class that is nested in
another top level class for packaging
convenience.

• Like a static method, cannot directly access
instance variables or methods in enclosing
class. Need object reference.

• Access using enclosing class name when using
in another class

OuterClass.StaticNestedClass nestedObject =

new OuterClass.StaticNestedClass ();



Inner Classes

• Associated with instance of enclosing class and
has access to that object’s methods and fields.

• Cannot define any static members itself.

• Must have instance of outer class to instantiate
an inner class.

OuterClass.InnerClass innerObject =

outerObject.new InnerClass ();

(Usually just use the implicit this object when
calling from non-static method)

• Special kind of inner classes: local classes and
anonymous classes



Shadowing

public class ShadowDemo {

public int x = 0;

public class Inner {

public int x = 1;

public void methodInInner(int x) {

System.out.println("x = " + x);

System.out.println("this.x = " + this.x);

System.out.println("ShadowDemo.this.x = "

+ ShadowDemo.this.x);

}

}

public static void main(String [] args) {

ShadowDemo sd = new ShadowDemo ();

ShadowDemo.Inner in = sd.new Inner ();

in.methodInInner (23);

}

}

Output:

x = 23

this.x = 1

ShadowDemo.this.x = 0



Local Classes
A local class is an inner class defined inside a
method body.

public class LocalClassExample {

public static void sayHello () {

class HelloHelper () {

public void printHello () {

System.out.println("Hello!");

}

}

HelloHelper myHelper = new HelloHelper ();

myHelper.printHello ();

}

}



Anonymous Classes
An anonymous class is a local class defined without
a name.
public class AnonymousClassExample {

public interface Greeter {

void greet ();

}

public void sayHello () {

Greeter greeting = new Greeter () {

public void greet() {

System.out.println("Hello!");

}

};

greeting.greet ();

}

Anonymous classes are often used in GUI
applications.



Simple Enum example

public enum Day {

SUNDAY , MONDAY , TUESDAY , WEDNESDAY ,

THURSDAY , FRIDAY , SATURDAY

}

public static void main(String [] args) {

Day today = Day.FRIDAY;

switch(today) {

case SATURDAY:

case SUNDAY:

System.out.println("Yay! Weekend!");

break;

default:

System.out.println("Not another weekday!");

break;

}

}



Enums are classes

• All enums implicitly extend java.lang.Enum

• Can define fields and methods
• More powerful than enums in other languages.
• Allows data and behaviour to be packaged with the

enum constants.

• Constructor must be private or package-private

• Cannot explicitly call constructor



Fancier Enum Example
public enum Day {

SUNDAY(true), MONDAY(false), TUESDAY(false),

WEDNESDAY(false), THURSDAY(false),

FRIDAY(false), SATURDAY(true);

private final boolean isWeekend;

private Day(boolean isWeekend) {

this.isWeekend = isWeekend;

}

public void exclaim () {

if(isWeekend) {

System.out.println("Yay! Weekend!");

} else {

System.out.println("Not another weekday!");

}

}

}



Enum Example: Planets
public enum Planet {

MERCURY (3.303e+23, 2.4397 e6),

VENUS (4.869e+24, 6.0518 e6),

EARTH (5.976e+24, 6.37814 e6),

MARS (6.421e+23, 3.3972 e6),

JUPITER (1.9e+27, 7.1492 e7),

SATURN (5.688e+26, 6.0268 e7),

URANUS (8.686e+25, 2.5559 e7),

NEPTUNE (1.024e+26, 2.4746 e7);

private final double mass; // in kilograms

private final double radius; // in meters

Planet(double mass , double radius) {

this.mass = mass;

this.radius = radius;

}

private double mass() { return mass; }

private double radius () { return radius; }



Planets continued
// universal gravitational constant (m3 kg -1 s-2)

public static final double G = 6.67300E-11;

double surfaceGravity () {

return G * mass / (radius * radius );

}

double surfaceWeight(double otherMass) {

return otherMass * surfaceGravity ();

}

public static void main(String [] args) {

double earthWeight = 175;

double mass =

earthWeight/EARTH.surfaceGravity ();

for (Planet p : Planet.values ())

System.out.println("Your weight on " + p

+ " is " + p.surfaceWeight(mass ));

}

}



Planets output

Your weight on MERCURY is 66.107583

Your weight on VENUS is 158.374842

Your weight on EARTH is 175.000000

Your weight on MARS is 66.279007

Your weight on JUPITER is 442.847567

Your weight on SATURN is 186.552719

Your weight on URANUS is 158.397260

Your weight on NEPTUNE is 199.207413

The planets example is from the Java Tutorial.

http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

