
CS 251
Intermediate Programming

Exceptions

Brooke Chenoweth

University of New Mexico

Spring 2024

Expecting the Unexpected
Most of the time our programs behave well,
however sometimes unexpected things happen.
Java’s way of handling these types of problems is
called exception handling

When do exceptions occur?

• When you least expect them to. . .
• When there’s something wrong with the
hardware, or other things that you can’t control
from your program.

• Input from files (or other streams)
• Communication of various kinds (internet, users)

• Or. . .When you create them yourself
• Custom problem space may need custom

exceptions

What is an exception?

• Like everything else in java, they are Objects

• Objects can be created and customized,
extended and inherited

• Many exceptions are already predefined in java
• ArrayIndexOutOfBoundsException is one of

them
• Extends the class RuntimeException
• For more refer to the Exception class in the Java

API.

Custom exception class

public class BadThingHappenedException

extends Exception {

public BadThingHappenedException () {

super("Something bad happened");

}

public BadThingHappenedException (String msg) {

super(msg);

}

}

Creating an exception

• Create a new exception object:

Exception myEx = new BadThingHappenedException ();

• Creating an exception, doesn’t mean you
caused an exceptional event.

• Nothing happens until you “throw” it. . .

Exception keywords

• try – clause for testing potential exception
code.

• catch – catching the exceptions, if they
happen

• throws – used in method headers to indicate
method might cause exception

• throw – used by a method to “throw” (cause)
an exception

• finally – code executed after the try-catch
clauses, regardless of whether exception
happened or not.

Catching an Exception

• Try to compile the following:

public class Sleeper {

public void sleep10Secs () {

Thread.sleep (10000);

}

}

• Will not work. . .Why?

Methods throwing Exceptions

• Methods can define that they wish to be able
to throw one or more exceptions
int myMethod() throws SomeException

int myMethod() throws SomeException, SomeOtherException

• Note that these exception classes must exist
and be defined as the prior
BadThingHappenedException for the
program to compile

• Thread.sleep() is defined like this, it throws
an InterruptedException in case its sleep is
disturbed.

Catching exceptions

• Calls to methods that potentially throw
exceptions must be “padded” to allow
compilation, to allow for the exception to
happen

• There are two basic approaches:
• Ignoring the exceptions, and passing them on to

the caller of your method.
• Catching the exception and dealing with it yourself

Ignoring (passing on) exceptions

• To avoid dealing with the exceptions yourself,
while still calling methods that might throw
exceptions - your method must also be declared
to throw those same exceptions.

public class Sleeper {

public void sleep10Secs ()

throws InterruptedException {

Thread.sleep (10000);

}

}

• Only viable if caller is prepared to handle
exceptions

Catching exceptions
Other solution: catch the exception and handle it
yourself

public class Sleeper {

public void sleep10Secs () {

try {

Thread.sleep (10000);

} catch (InterruptedException ie) {

System.out.println ("Woke up early!");

}

}

}

When you do this, make sure you really handle the
exception.

Don’t eat exceptions!

try {

bigRedButton.pushIt ();

} catch (EndOfTheWorldException ex) {

// Silently ignoring Armageddon ...

}

At the very least, add some debugging output in
case the “impossible” exception happens.

Which one to use?

• Both above methods are allowed

• Only use “passing on” when you are sure that
caller can handle exception, or if ok to ignore
exceptions

• If you can handle exception within – then do!

• Makes your program more robust

Throwing an exception

• If necessary, you can create and throw an
exception:
throw new SomeException("Explanation");

• Assumes the SomeException class exists, and
has a constructor taking a String argument

• Aborts the execution of the current method, no
return value is provided

• Exception must be handled by the caller of
your method

• Your method must be declared as:
public int myMethod() throws SomeException

Throwing while catching

• Can throw an exception in a catch clause, if
you want to create your own Exception
messages, or provide an abstraction for the
“real” exception:

try {

Thread.sleep (10000);

} catch (InterruptedException ie) {

throw new SomeException("Awakened");

}

• The class SomeException must exist

try ...catch ...finally

• Similar to an if statement

• Can have only one try clause, but. . .

• Any number of catch clauses

• Catch clauses should be ordered in decreasing
order of specialization, i.e., if catch
(Exception e) is the first, it will catch all
exceptions.

• finally clause to be used if something must
happen, even if exception will be thrown (and
method exit)

try/catch/finally example

try {

driver.getInCar ();

driver.driveToWork ();

} catch (DeadBatteryException ex) {

driver.callAAA ();

} catch (NoKeysException ex) {

driver.takeBus ();

} finally {

if(driver.isInCar ()) {

driver.getOutOfCar ();

}

}

Checked vs Unchecked

• Most exceptions are checked exceptions, which
means you must handle them somehow.

• Exception types that extend
RuntimeException are unchecked exceptions,
which means you don’t have to handle them,
but may choose to do so.

• Usually these are programmer errors, like divide by
zero, index out of bounds, referencing null.

• Generally can avoid through good coding.
• Still might catch, just in case, but shouldn’t be

first choice.

A note on usage. . .

• Many types of problems can be detected and
prevented inside your code. When possible this
is preferred since exceptions run slower than
“normal” code.

• Exception code is executed in special mode,
and exiting by normal means is faster in
high-performance requirements

