
CS 251
Intermediate Programming

Keyword Roundup

Brooke Chenoweth

University of New Mexico

Spring 2024

So many keywords!

• static

• final

• abstract

• public, private, protected

• class, interface, enum

• extends, implements

• this, super

• instanceof

• try, catch, finally, throw, throws

Primitive Types

• boolean

• byte

• char

• double

• float

• int

• long

• short

Literal values: true, false, null

• true, false, and null are not actually keywords1,
they are literals

• Still can’t use them as identifiers in your
programs

1splitting hairs here

var for type inference
• Java 10 introduced a reserved type name2 for
inferring types of local variables.

• Only works when initializing a local variable to
something non-null

• Can make more readable code by eliminating
redundant type information. Instead of
BigUglyLongTypeName a = someMethod ();

AnotherUglyType b = new AnotherUglyType(a);

oneMoreMethod(b);

We can use
var a = someMethod ();

var b = new AnotherUglyType(a);

oneMoreMethod(b);

2not technically a keyword, so code with variables named var still OK

void

• Use void when declaring/defining methods to
specify method has no return type.

public void myMethod () {

}

• void is not a type. (Can’t have a void
reference, unlike C or C++)

Control Flow
• break
• case
• continue
• default3

• do
• else
• for
• if
• return
• switch
• while
3Also can allow interface to provide implementation of a method

new

Use new to create new objects.

• Color col = new Color(5,5,5);

• Block[] blocks = new Block[20];

static

If a member is static, it belongs to the class, not a
particular instance.

• Variables

• Methods

• Nested classes

• Nested interfaces

• Nested enums

final

If something is final, it cannot be changed.
• A final variable cannot be reassigned.

• Final member variable is initialized once when
object is constructed.

• Final parameter is not assigned within method.
• Final local variable will not be reassigned.
• Local class method referencing local variable or

parameter insists on final.

• A final method cannot be overridden.

• A final class cannot be extended.

abstract

• An abstract method is declared without an
implementation.

• If a class has abstract methods, it must be
declared abstract. (May also declare class
abstract without abstract methods.)

• An abstract class cannot be be instantiated.

this

• Access member variables.

• Call one constructor from another.

public class Point2D {

protected double x, y;

public Point2D(double x, double y) {

this.x = x;

this.y = y;

}

public Point2D () {

this(0, 0);

}

}

super
• Call parent constructor from child’s
constructor.

• Must be first statement in child constructor.
• If omitted, default (no argument) parent

constructor is called.

• Access parent methods when child overrides.
• Access hidden parent fields. (Tip: Don’t hide
fields. It’s confusing!)

public class Point3D extends Point2D {

protected double z;

public Point3D(double x, double y, double z) {

super(x, y);

this.z = z;

}

}

Access Modifiers

private Only this class

package-private No modifier. This class and others
in same package

protected This class and its subclasses, plus same
package

public Accessible to all

package

• Use packages to group related types.

package mypackage;

public class MyClass {

}

• Companies use reversed internet domain name
to begin package names.

• com.example.mypackage

• If no package statement, your type will be in
an unnamed package.

• Package structure and directory structure
usually must match.

import
• Can use package member with fully qualified
name without importing.

• mypackage.MyClass

• java.awt.Color

• Can import specific member

import mypackage.MyClass;

• Can import entire package with wildcard.

import java.awt .*;

class, interface, enum

• A class is a template for a type of object.

• An interface is contract defining public
behaviour.

• An enum is a special kind of class that defines
a fixed set of constants.

• All can be top-level or nested.

record classes for plain data
As of JDK 16, we have a new keyword record to
define a simple object type to hold a few fields of
immutable data.

public record Rectangle(double length , double width) { }

is equivalent to

public final class Rectangle {

private final double length;

private final double width;

public Rectangle(double length , double width) {

this.length = length;

this.width = width;

}

double length () { return this.length; }

double width() { return this.width; }

// equals(), hashCode(), toString using fields

}

extends vs implements

• A class extends its parent class.

• An interface possibly extends another
interface.

• A class implements an interface.

instanceof

• Sometimes, you really need to know if an
object is an instance of a particular type. You
can use instanceof to find out.

• Reconsider your design if you are using lots of
instanceof expressions. Polymorphism is
better!

• Common use of instanceof is when
overriding equals

Pattern matching with instanceof

Let’s assume with have a Shape interface,
implemented by Rectangle

if(shape instanceof Rectangle) {

Rectangle r = (Rectangle)shape;

// do Rectangle stuff here

}

The instanceof check tells us we can safely cast.

As of JDK 17, we can simplify this test plus cast
like so:

if(shape instanceof Rectangle r) {

// do Rectangle stuff here

}

Pattern matching with instanceof

Let’s assume with have a Shape interface,
implemented by Rectangle

if(shape instanceof Rectangle) {

Rectangle r = (Rectangle)shape;

// do Rectangle stuff here

}

The instanceof check tells us we can safely cast.
As of JDK 17, we can simplify this test plus cast
like so:

if(shape instanceof Rectangle r) {

// do Rectangle stuff here

}

Exception Handling

• try – clause for testing potential exception
code.

• catch – catching the exceptions, if they
happen

• throws – used in method headers to indicate
method might cause exception

• throw – used by a method to “throw” (cause)
an exception

• finally – code executed after the try-catch
clauses, regardless of whether exception
happened or not.

Other Keywords – not used in this course

• transient – used to exclude field from
serialization

• synchronized – used in multithreaded
programs

• volatile – used in multithreaded programs

• const, goto – not actually used, but are
reserved words

• assert – used to test assumptions (disabled
by default)

assert

• If you want to programmatically test your
assumptions, you can add assert statements
to your program.

• assert booleanExpr;

• By default, does nothing, but if you run with
the -ea flag to enable assertions, will throw an
AssertionError if booleanExpr is false.

• You would only use this in testing, not for
actual program control. (Since they can be
disabled.)

