
CS 251
Intermediate Programming

Java I/O – File I/O

Brooke Chenoweth

University of New Mexico

Spring 2024



Paths
• Most file systems store files in a hierarchical
structure.

• The top of the directory tree is a root node (or
more than one). Root node on Linux is /, on
Windows is a drive letter, such as C:\

• Root directory contains files and directories,
directories can contain subdirectories, and so
on.

• A file is identified by its path through the file
system.

• Directory names separated by system-specific
delimiter. (Windows uses backslash, most
others use forward slash)



Absolute vs Relative Paths
• An absolute path always starts at the root.

• /home/sally/javacode
• C:\home\sally\javacode

• All info needed to locate file is contained in
absolute path.

• Relative path is relative to another path.
• bob/foo

• Relative path needs to be combined with
another path to locate a file.



The Path class

• New in Java SE 7

• Located in java.nio.file package

• Represents a path in the file system.

• Just a path, does not guarantee that
corresponding file or directory actually exists.



Creating a Path
Create Path object by using methods in the Paths
helper class.

Path p1 = Paths.get("/tmp/foo");

Path p2 = Paths.get("/", "tmp", "foo");



Path Operations
• toString – string representation
• getFileName – get file name (last element in
sequence)

• getParent – path of parent directory
• getRoot – get root of path (null for relative
paths)

• toAbsolutePath – convert path to absolute
path relative to current working directory.

• resolve(otherpath) – combine this path
with another

• relativize(otherpath) – create path from
this path to other path



The Files class

• A Path object represents a file or directory, but
says nothing about whether that file exists.

• The Files class provides methods access the
file system and examine and manipulate files.



Existence and Accessibility

• Files.exists(path) and
Files.notExists(path) verify if particular
Path exists or not. Possible for both to return
false if file’s status is unknown.

• isRegularFile, isDirectory – What sort of
file is this?

• isReadable, isWritable, isExecutable –
what can we do with the file?

• isSameFile – Do two paths refer to same file?



Deleting Files

• Files.delete(path) – deletes file or throws
exception if it fails.

• Files.deleteIfExists(path) – deletes file,
doesn’t complain if file isn’t there



Copying Files

• Use Files.copy(source, target,

copyOptions) to copy a file.
• Directories can be copied, but files inside are not
copied. (Use walkFileTree to recursively copy.)

• Copy takes zero or more CopyOption arguments.
• REPLACE EXISTING – If target file exists, replace it

instead of throwing FileAlreadyExistsException
• COPY ATTRIBUTES – Try to give target same attributes

(access permissions, last modified time, etc.) as source.
• NOFOLLOW LINKS – If source is a symbolic link, copy the

link itself, not the file the link refers to.

• Files also has copy methods to copy from an input
stream to a file and from a file to an output stream.



Moving Files

• Use Files.move(source, target) to move
(or rename) a file or directory.

• Source and target paths should not refer to
same file.



Using Stream I/O with Files

• Files.newInputStream creates a new byte
input stream from a file path.

• Files.newOutputStream creates a new byte
output stream from a file path.

• These methods provide unbuffered streams.

• For text files, use Files.newBufferedReader
and Files.newBufferedWriter.



Input Stream From a File

Path file = Paths.get("myfilename");

try (InputStream in = Files.newInputStream(file);

BufferedReader reader =

new BufferedReader(new InputStreamReader(in))) {

String line = null;

while ((line = reader.readLine ()) != null) {

System.out.println(line);

}

} catch (IOException x) {

System.err.println(x);

}



Creating Files

Path file = Paths.get("myfilename");

try {

// Create empty file with default permissions , etc.

Files.createFile(file);

} catch (FileAlreadyExistsException x) {

System.err.format("file named %s" +

" already exists%n", file);

} catch (IOException x) {

// Some other sort of failure , such as permissions.

System.err.format("createFile error: %s%n", x);

}



Creating Temporary Files

try {

// null Path creates file in system temp directory

Path tempFile = Files.createTempFile(null , ".junk");

System.out.format("The temporary file" +

" has been created: %s%n", tempFile );

} catch (IOException x) {

System.err.format("IOException: %s%n", x);

}



Walking the File Tree

• Files.walkFileTree(path, fileVisitor)

will visit all files in the directory given by path

and perform operations specified by
fileVisitor.

• File tree is walked depth first, but you cannot
make any assumptions about order that
subdirectories will be visited.



File Visitor
• The FileVisitor interface has four methods

• preVisitDirectory – Invoked before a
directory’s entries are visited.

• postVisitDirectory – Invoked after all the
entries in a directory are visited.

• visitFile – Invoked on the file being visited.
• visitFileFailed – Invoked when the file cannot

be accessed.
• The FileVisitor methods return
FileVisitResult

• CONTINUE – Continue walking the tree.
• SKIP SIBLINGS – Continue without visiting

siblings of this file or directory.
• SKIP SUBTREE – Continue without visiting entries

in this directory.
• TERMINATE – Stop walking the tree.



Example: Printing File Sizes
public class PrintFiles

extends SimpleFileVisitor <Path > {

public FileVisitResult visitFile(Path file ,

BasicFileAttributes attr) {

System.out.println(file + " (" + attr.size() + "bytes)");

return FileVisitResult.CONTINUE;

}

public FileVisitResult postVisitDirectory(Path dir ,

IOException exc) {

System.out.format("Directory: %s%n", dir);

return FileVisitResult.CONTINUE;

}

public FileVisitResult visitFileFailed(Path file ,

IOException exc) {

System.err.println(exc);

return FileVisitResult.CONTINUE;

}

}



Example: Copy File Tree
// source , target are Path objects

Files.walkFileTree(source , new SimpleFileVisitor <Path >() {

public FileVisitResult preVisitDirectory(Path dir ,

BasicFileAttributes attrs) throws IOException {

Path targetdir = target.resolve(source.relativize(dir ));

try {

Files.copy(dir , targetdir );

} catch (FileAlreadyExistsException e) {

if (! Files.isDirectory(targetdir )) {

throw e;

}

}

return FileVisitResult.CONTINUE;

}

public FileVisitResult visitFile(Path file ,

BasicFileAttributes attrs) throws IOException {

Files.copy(file , target.resolve(source.relativize(file )));

return FileVisitResult.CONTINUE;

}

});



Dealing with Old API

• Before Java 7, most file I/O used
java.io.File

• Lots of legacy code out there.

• Can convert between old and new API with
File.toPath and Path.toFile methods.

• Consult the Java I/O tutorial for more
information.


