
CS 351
Design of Large Programs
Programming Abstractions

Brooke Chenoweth

University of New Mexico

Spring 2024

Searching for the Right Abstraction

• The language we speak relates to the way we
think.

• The way we view programming affects the
kinds of systems we construct.

• Thus, the level of abstraction impacts:
• Programming productivity
• Reasoning about programs
• Program analysis
• Formal verification

Control Abstractions
Flow of control defines the order in which
instructions are executed.
• Sequential flow of control is built into most
machines (program counter)

• Conditional jumps allow the interpreter to skip
and/or repeat code segments

• if and goto statements provide a more uniform
treatment by separating the condition from the
flow of control transfer.

• Further reductions in complexity are achieved
by the shift to structured programming

• Exceptions provide a structured mechanism for
handling error conditions

Procedural Abstractions
Procedural abstractions laid the foundation for
modular design.

• Macro substitution offered a mechanism for
naming sections of code and inserting them as
needed

• Subroutines (non-recursive), introduced as a
memory saving device, structured the flow of
control

• Blocks provide an in-line structuring construct
central to all modern programming languages

• Procedures (recursive) encapsulate processing,
thus eliminating the need to look at the way
they are coded (if a specification exists!)

• Functions (pure) are procedures without side
effects

Data Abstraction
Data is central to the representation of state.
• Built-in data types provide essential but
primitive forms of data representation and
operations on them

• Programmer-defined types facilitate tailoring
data selection to the specifics of the application

• Strongly-typed languages improve dependability
by doing strict compile-time checking

• Abstract data type (ADT) is a formal
characterization of a set of data structures
sharing a common set of operations

• Generic types (e.g., generics in Java) allow for
parameterized definitions

Concurrency
Concurrency impacts the choice of components and
connectors.

• Concurrency is often relegated to operating
systems services rather than language definition
(e.g., C++)

• Coroutines introduced the notion of passing the
flow of control among subroutines

• Concurrent process (e.g., task in Ada, thread in
Java) provides for logically parallel execution

• Inter-process communication assumes a variety
of forms

• Shared variables
• Message passing
• Remote procedure call

• Synchronization (mutual exclusion, barriers,
etc.)

Functions Revisited
As in mathematics, a function defines a
transformation from its inputs to the outputs.

• It has no side effects (no memory and no
changes in the program state)

• It is deterministic (same inputs generate the
same outputs every time)

Function Example: factorial
• factorial(n) where n is a natural number
returns

• 1 if n = 0
• n · (n − 1) · · · 1 if n > 0

• Functions are often defined recursively
factorial(n) returns

• 1 if n = 0
• n · factorial(n − 1) if n > 0

• What happens if n is an integer?
factorial(n) returns

• error if n < 0
• 1 if n = 0
• n · factorial(n − 1) if n > 0

Factorial in Java

public static int factorial(int n)

throws ArithmeticException {

if(n < 0) throw new ArithmeticException ();

else if(n == 0 || n == 1) return 1;

return n * factorial(n-1);

}

public static int factorial(int n) {

if(n < 0) {

System.err.println("Error: Factorial is undefined"

+ " for negative integers.");

return 0;

}

else if(n == 0 || n == 1) return 1;

return n * factorial(n-1);

}

Axiomatic Specification
A mathematical relation between the input and
output values.
Assertions represent a convenient abstract
mechanism for function specification
• An assertion is a logical fact that is true about
the state of the program at some point in its
execution

• Some programming languages provide
assertions as built-in constructs

• A pre-assertion defines the relevant properties
of the input values

• A post-assertion defines the relevant properties
of the output value

Axiomatic Spec: Sort
Sort(X) returns Y
pre:

• X is an array of integers indexed from 0 to N

post:

• Y is an array of integers indexed from 0 to N

• Y is sorted in ascending order

• any integer k occurs the same number of times
in both X and Y

Operational Specification (Pseudocode)
• An operational specification is an abstract
program that:

• Establishes the desired relation between inputs and
outputs

• Places no restrictions on how the function is
ultimately coded

• Any code that accomplishes the same
transformation is acceptable

• Some coding solutions may be more efficient
than others

Pseudocode: Sort
Sort(X) returns Y
given:

• X is an array of integers indexed from 0 to N

• Y is an array of integers indexed from 0 to N

1. copy X into Y
2. while (there exists i and j such that i < jand

Y [i] > Y [j])
• swap Y[i] and Y[j]

Sort in Java: bubblesort
public static int[] bubbleSort(int[] ary) {

// assert ary.length > 0;

int length = ary.length -1;

boolean swap = true;

while(swap) {

swap = false;

for(int i=0; i<length; i++) {

if(ary[i+1] < ary[i]) {

int tmp = ary[i];

ary[i] = ary[j];

ary[j] = tmp;

swap = true;

}

}

}

return ary;

}

Sort in Java: quicksort
public static void quickSort(int[] ary , int low , int high) {

if(ary == null || ary.length == 0) return;

if(low >= high) return;

int mid = low + (high - low) / 2;

int pivot = ary[mid];

int i = low , j = high;

while(i <= j) {

while(ary[i] < pivot) i++;

while(ary[j] > pivot) j--;

if(i <= j) {

int tmp = ary[i];

ary[i] = ary[j];

ary[j] = tmp;

i++;

j--;

}

}

if(low < j) quickSort(ary , low , j);

if(high > i) quickSort(ary , i, high);

}

Procedures Revisited
Procedures, in contrast to functions, may have side
effects due to:

• Local variables

• Access to resources

• Access to devices

The result of invoking a procedure may lead to

• Returning data whose values depend on the
internal state of the procedure

• Changes in the internal state of the procedure

The specification methods are similar except for:

• The treatment of the internal state!

Abstract State Specification

• The internal state (e.g., data structures) of a
procedure may be highly complex

• Proper abstraction of the internal state
simplifies greatly the specification

• Users of the procedure need not be exposed to
the internal data representation

• Internal representation may change over time
• Specification is not affected
• Code may be drastically affected

Documentation Implications (1/2)
Pre and Post assertions are the best way to
document procedures and methods.

• Assertions are very helpful when placed at
critical junctions in the code.

Pseudocode

• is not as helpful as assertions in documenting
code

• is very good at capturing processing logic, e.g.,
explicit task scheduling

• must be highly abstract with a typical ratio of
1:10 (text vs. code)

Documentation Implications (2/2)
Focusing on an abstract state

• is challenging

• simplifies documentation

• protects the documentation against
implementation changes

• is primarily associated with object and class
documentation

