CS 351
Design of Large Programs
Programming Abstractions

Brooke Chenoweth

University of New Mexico

Spring 2024



Searching for the Right Abstraction

® The language we speak relates to the way we
think.

® The way we view programming affects the
kinds of systems we construct.
® Thus, the level of abstraction impacts:

® Programming productivity
® Reasoning about programs
® Program analysis

® Formal verification



Control Abstractions

Flow of control defines the order in which
instructions are executed.

Sequential flow of control is built into most
machines (program counter)

Conditional jumps allow the interpreter to skip
and/or repeat code segments

if and goto statements provide a more uniform
treatment by separating the condition from the
flow of control transfer.

Further reductions in complexity are achieved
by the shift to structured programming
Exceptions provide a structured mechanism for
handling error conditions



Procedural Abstractions

Procedural abstractions laid the foundation for
modular design.

Macro substitution offered a mechanism for
naming sections of code and inserting them as
needed

Subroutines (non-recursive), introduced as a
memory saving device, structured the flow of
control

Blocks provide an in-line structuring construct
central to all modern programming languages
Procedures (recursive) encapsulate processing,
thus eliminating the need to look at the way
they are coded (if a specification exists!)
Functions (pure) are procedures without side
effects



Data Abstraction

Data is central to the representation of state.

Built-in data types provide essential but
primitive forms of data representation and
operations on them

Programmer-defined types facilitate tailoring
data selection to the specifics of the application
Strongly-typed languages improve dependability
by doing strict compile-time checking

Abstract data type (ADT) is a formal
characterization of a set of data structures
sharing a common set of operations

Generic types (e.g., generics in Java) allow for
parameterized definitions



Concurrency

Concurrency impacts the choice of components and
connectors.

Concurrency is often relegated to operating
systems services rather than language definition
(e.g., C++)

Coroutines introduced the notion of passing the
flow of control among subroutines

Concurrent process (e.g., task in Ada, thread in

Java) provides for logically parallel execution
Inter-process communication assumes a variety
of forms

® Shared variables

® Message passing

® Remote procedure call

Synchronization (mutual exclusion, barriers,
etc.)



Functions Revisited

As in mathematics, a function defines a
transformation from its inputs to the outputs.

® |t has no side effects (no memory and no
changes in the program state)

e |t is deterministic (same inputs generate the
same outputs every time)



Function Example: factorial

e factorial(n) where n is a natural number
returns
® 1ifn=0
®n-(n—=1)---1ifn>0
e Functions are often defined recursively
factorial(n) returns
® 1ifn=0
® n-factorial(n — 1) if n >0
e What happens if n is an integer?
factorial(n) returns
® errorif n<0
e 1ifn=0
® n-factorial(n — 1) if n >0



Factorial in Java

public static int factorial(int n)
throws ArithmeticException {
if(n < 0) throw new ArithmeticException();
else if(n == 0 || n == 1) return 1;
return n * factorial(n-1);

3

public static int factorial(int n) {
if(n < 0) {
System.err.println("Error: Factorial is undefined
+ " for negative integers.");
return O;
X
else if(n == 0 || n == 1) return 1;
return n * factorial(n-1);



Axiomatic Specification

A mathematical relation between the input and
output values.
Assertions represent a convenient abstract
mechanism for function specification
® An assertion is a logical fact that is true about
the state of the program at some point in its
execution
® Some programming languages provide
assertions as built-in constructs
e A pre-assertion defines the relevant properties
of the input values
® A post-assertion defines the relevant properties
of the output value



Axiomatic Spec: Sort

Sort(X) returns Y
pre:

e X is an array of integers indexed from 0 to N
post:

® Y is an array of integers indexed from 0 to N

® Y is sorted in ascending order

® any integer k occurs the same number of times
in both X and Y



Operational Specification (Pseudocode)

e An operational specification is an abstract
program that:

® Establishes the desired relation between inputs and
outputs
® Places no restrictions on how the function is
ultimately coded
® Any code that accomplishes the same

transformation is acceptable

e Some coding solutions may be more efficient
than others



Pseudocode: Sort

Sort(X) returns Y

given:
e X is an array of integers indexed from 0 to N
® Y is an array of integers indexed from 0 to N

1. copy Xinto Y

2. while (there exists i and j such that / < jand
Y[l > Y[])
® swap Y[i] and Y[j]



Sort in Java: bubblesort

public static int[] bubbleSort(int[] ary) {
// assert ary.length > 0;
int length = ary.length-1;
boolean swap = true;

while (swap) {
swap = false;
for (int i=0; i<length; i++) {
if (ary[i+1] < ary[il) {

int tmp = aryl[i]l;
ary[i] = aryl[j];
ary[j]l = tmp;
swap = true;

}
}

return ary;

}



Sort in Java: quicksort

public static void quickSort (int[] ary, int low, int high) {
if (ary == null || ary.length == 0) return;
if (low >= high) return;

int mid = low + (high - low) / 2;
int pivot = ary[mid];
int i = low, j = high;
while (i <= j) {
while(ary[i] < pivot) i++;
while(ary[j] > pivot) j--;
if(i <= §) 1
int tmp = aryl[il;
ary[i] = aryl[j]l;
ary [j] tmp ;
i++;
i==s
¥

}

if (low < j) quickSort(ary, low, j);

if (high > i) quickSort(ary, i, high);
}



Procedures Revisited

Procedures, in contrast to functions, may have side
effects due to:

® | ocal variables
® Access to resources
® Access to devices
The result of invoking a procedure may lead to

® Returning data whose values depend on the
internal state of the procedure

e Changes in the internal state of the procedure
The specification methods are similar except for:
® The treatment of the internal state!



Abstract State Specification

The internal state (e.g., data structures) of a
procedure may be highly complex

Proper abstraction of the internal state
simplifies greatly the specification

Users of the procedure need not be exposed to
the internal data representation

Internal representation may change over time

® Specification is not affected
® Code may be drastically affected



Documentation Implications (1/2)

Pre and Post assertions are the best way to
document procedures and methods.

® Assertions are very helpful when placed at
critical junctions in the code.

Pseudocode

® is not as helpful as assertions in documenting
code

® is very good at capturing processing logic, e.g.,
explicit task scheduling

® must be highly abstract with a typical ratio of
1:10 (text vs. code)



Documentation Implications (2/2)

Focusing on an abstract state

® is challenging
e simplifies documentation
[ J

protects the documentation against
implementation changes

® is primarily associated with object and class
documentation



