
CS 351
Design of Large Programs

Abstract Data Types

Brooke Chenoweth

University of New Mexico

Spring 2024



Data Abstraction Revisited

• Built-in data types (int, boolean, etc.)

• Programmer-defined types

• Strongly-typed languages
• Abstract data type (ADT)

• a formal characterization of a set of data structures
• sharing a common set of operations

• Generic types (parameterized definitions)



Abstract Data Type Definition
A formal characterization of a set of data structures
that share a common set of operations having
well-defined syntax and semantics.
An ADT specification

• is independent of any possible realization

• may be captured in purely mathematical terms

The ADT is the conceptual basis for the class
construct



Basic Class Concept
The notion of class assumes many forms:
• mathematics

• collection of sets sharing some property

• natural language concept
• collection of objects sharing some properties
• red, car, birds, etc.

• design notation
• documentation of a set of objects having identical

properties
• does not depend on availability of an

object-oriented programming language

• programming language construct



Class Construct in Java
Embodiment of the abstract data type concept
• fields
• methods

Mechanisms for deriving new classes:
• inheritance

• single (extending a class)
• multiple (implementing interfaces)

• new fields and methods
• method overriding
• inheritance controls (final)

Access control mechanics:
• public, private, protected



Sample Class Definition
public class Asteroid {

private static int nextid = 0;

private int id;

private Color color;

private Point location;

private int[] velocity;

public Asteroid(Color color , Point location , int[] velocity) {

this.color = color;

this.location = location;

this.velocity = velocity;

this.id = nextid;

nextid ++;

}

public void updateLocation(int elapsedTime) {

// ...

}

public void setVelocity(int[] velocity) {

this.velocity = velocity;

}

public int[] getVelocity () { return velocity; }

public Point getLocation () { return location; }

}



OOD Perspective
Class as a strict embodiment of the abstract data
type concept

• private fields

• public methods

Restricted mechanisms for deriving new classes
• inheritance

• single (extending a class)
• multiple (implementing interfaces)

• method overriding subject to semantic
consistency



Object Creation

• Objects are dynamically created instances of a
class

• Storage is allocated for the fields

• Code is reused from the class definition

• Java uses garbage collection to reclaim storage
used by inaccessible objects



Notation for Instantiation

Asteroid

id
color
location
velocity

updateLocation
setVelocity
getVelocity
. . .

a2 : Asteroid

id = 1
color = Color.BLUE
location = Point(56, 0)
velocity = int[]{0, -1}

a1 : Asteroid

id = 0
color = Color.RED
location = Point(-122, 0)
velocity = int[]{0, 1}



Simple Design Diagram

Procedure

Asteroid a1 Asteroid a2


