
CS 351
Design of Large Programs

Object-Oriented Design Principles

Brooke Chenoweth

University of New Mexico

Spring 2024



A Starting Point
Simplifying assumptions:

• the program execution is sequential

• the program executes on a single machine

The program is hierarchically structured in terms of
three levels:

• main program

• subordinate objects

• external devices



Relevant Concepts
Main program

• an active procedure

• controls the execution logic

• invokes methods on subordinate objects

Subordinate objects

• are objects in the programming sense

• offer public methods to the main program

• do not interact with each other

• have no public fields

• may be instances of some class



Key Relations
• The relation between the main program and
the subordinate objects is reference relation

• the entity above may invoke services provided by
the entity below i.e., the procedure may call
methods on the objects below

• The relation between objects and external
devices is encapsulates relation

• an external device is encapsulated by a single
object (for now)

• access to the external device below is controlled by
the object above



Where Did Classes Go?
OOD may be used even in the absence of an OOL
Understanding the fundamentals of OOD does not
require the class concept.
Language support:
• enhances programming productivity
• enriches the design vocabulary
• fosters code reuse

The relation between class definitions and the
design is reflected:
• by the fact that objects in the design are
instances of classes

• by the mechanics of class definition captured in
class diagrams



Notation

Main Procedure

Virtual Device

Physical Device

Device Class

fields. . .

methods. . .



Design Principles

1. Separation of Concerns

2. Information Hiding

3. Data Encapsulation

4. Device Encapsulation

5. Balanced Levels of Abstraction

6. Protection Against Change



1. Separation of Concerns
• The principle of separation of concerns
demands that:

• unrelated concerns should be associated with
distinct entities in the design

• related concerns should be associated with a
relevant entity in the design

• This principle impacts design decisions relating
to modularity

• Object-oriented design enables the application
of this principle

• Strict application of the principle is not always
straightforward

• Changes to requirements may have a major
impact on the design



Illustration: Remote Light Control
Consider a light fixture controlled by a remote.
• the light can be turned on and off
• the remote sends a request to turn the light on
and off

Remote and Light are natural objects to consider in
the design.
How should these two objects interact with each
other?

Controller

Remote Light



Did We Get It Right?
What is the impact of:

• adding a light switch on the wall?

• adding a motion sensor for night time use?

• turning off the lights in the morning?

Controller

Remote Light????



2. Information Hiding
Limit knowledge about design decisions as much as
possible.

• fundamental to encapsulation

Postpone design decisions for as long as possible.

• fundamental to top-down design

This relates strongly to the scope of program
changes. . . How we can minimize them?



Illustration: Animal Tracking
Consider a system that uses infrared sensing to
count animals at night

• an infrared camera takes snapshots at regular
intervals

• hot spots in the infrared image are treated as
potential distinct specimens

• the number of animals and the time of
detection are recorded



Illustration: Animal Tracking
Is the following design employing information
hiding?

Tracking History History Backup



3. Data Encapsulation
The introduction of the abstract data type
accomplished two important objectives:

1. Decoupled implementation details from
operations on the data.
This protects against changes in data storage
design.

2. Enabled the definition of programmer-defined
data types
This simplifies programming.



Illustration: Custom Dictionary
Consider an object called MyDictionary:

• initially contains an empty set W of words

• at most N words can be stored

• addWord(w) – adds one word to the set W, if
there is room for it

• removeWord(w) – removes one word from the
set W

• containsWord(w) — returns true iff the word is
in the set W

Simple Implementation: array of strings



Illustration: Custom Dictionary Revisited
Consider the following change in requirements:

• at most N words can be stored

• the number of words is very large

This new implemenation requires a tree structure.



4. Device Encapsulation
Devices are a volatile element of most designs.
Protect the system against device/protocol
substitutions:

• microcontroller reassignment of pins

• communication interface (USB connection vs.
Ethernet)

• memory mapped I/O vs. interrupt controls

Layers of encapsulation:

• application-specific virtualization

• virtual device

• device driver



Illustration: Timers

Timer

set
timeout
reset

Stopwatch

start
stop
elapsed

Alarm

set
reset
alarm

Clock

System Clock



5. Balanced Levels of Abstraction
In a hierarchically designed program or system:

• when moving up in the structure the level of
abstraction should increase

• when moving down in the structure the level of
abstraction should decrease

• entities at the same level in the structure
should exhibit comparable degree of abstraction



Illustration: Message Delivery

Message BitStream ByteOut Message

BitStream

ByteOut



6 Protection Against Change
The fundamental engineering concern of
object-oriented design is to protect the design and
implementation against impact of potential changes
• modifications to delivered code are expensive
• modifications can introduce errors
• limiting the scope of potential changes reduces
cost and mitigates risks

Any proposed design needs to be analyzed with
respect to the impact of changes
• processing logic
• processor changes
• device substitution
• elimination of performance bottle necks


