
CS 351
Design of Large Programs
From Design To Code

Brooke Chenoweth

University of New Mexico

Spring 2024



Class Construct
Class is the fundamental programming concept in Java

• fields
• methods
• modifiers

• public vs
private vs
protected

• static
• final
• abstract

• Programs are structured in
terms of classes

• Objects are instances of
classes

• Execution entails the
creation and manipulation
of objects



Class Definition
A class can be defined in several ways:

• by defining the fields and methods it provides
• by implementing an existing interface
• by extending an existing class

If class C extends class S

• C is called a subclass, derived class, or child class
• S is called a superclass, base class, or parent class
• C inherits all the fields and methods associated
with S

• C can add fields and methods
• C can override methods (and hide fields) but they
can still be accessed by referring to super



Inheritance Illustrated

Manager jane = new Manager ();

jane.setSalary (120000.0);

jane.setBonus (50000.0);

System.out.println(jane.getSalary ());

What is the intended control flow?



Inheritance Illustrated
public class Employee {

private double salary;

public void setSalary(double salary) {

this.salary = salary;

}

public double getSalary () {

return salary;

}

}

public class Manager extends Employee {

private double bonus = 0;

public void setBonus(double amount) {

bonus = amount;

}

public double getSalary () {

return salary + bonus;

}

}

What is the error?



Inheritance Illustrated
public class Employee {

private double salary;

public void setSalary(double salary) {

this.salary = salary;

}

public double getSalary () {

return salary;

}

}

public class Manager extends Employee {

private double bonus = 0;

public void setBonus(double amount) {

bonus = amount;

}

public double getSalary () {

return salary + bonus; salary field not visible

}

}

What is the error?



Inheritance Illustrated
public class Employee {

private double salary;

public void setSalary(double salary) {

this.salary = salary;

}

public double getSalary () {

return salary;

}

}

public class Manager extends Employee {

private double bonus = 0;

public void setBonus(double amount) {

bonus = amount;

}

public double getSalary () {

return getSalary () + bonus;

}

}

What is the error?



Inheritance Illustrated
public class Employee {

private double salary;

public void setSalary(double salary) {

this.salary = salary;

}

public double getSalary () {

return salary;

}

}

public class Manager extends Employee {

private double bonus = 0;

public void setBonus(double amount) {

bonus = amount;

}

public double getSalary () {

return getSalary () + bonus; Infinite recursion

}

}

What is the error?



Inheritance Illustrated
public class Employee {

private double salary;

public void setSalary(double salary) {

this.salary = salary;

}

public double getSalary () {

return salary;

}

}

public class Manager extends Employee {

private double bonus = 0;

public void setBonus(double amount) {

bonus = amount;

}

public double getSalary () {

return super.getSalary () + bonus;

}

}



Case Study: Credit Union
Consider a system that supports the basic
operations of a Credit Union:

• manage membership in the credit union by
adding and removing individual members

• manage accounts
• account creation and closing
• deposit and withdrawal of funds
• fund transfers among accounts belonging to the

same member

• accept and process transaction requests
originating with the bank teller



Representative Design Solution

Transaction
Manager

Membership
Manager

Request
Manager

Accounts
Manager

Bank Teller Membership Active
Account

Accounts
business
objects

business
processes

main
program



Coding Tasks
1. Define application-specific data types

• tailored to the application
• used consistently across the system
• simplifying the programming task

2. Code procedures and limit access by controlling
scope

3. Build classes required to manage the object
portfolio



User-Defined Types
Basic application concepts are abstracted as
user-defined data types

• ensure continuity with the requirements level

• simplify programming

Such types can vary in complexity

• class with multiple public fields

• class with multiple private fields and extractor
methods

• class with private fields and public methods



User-Defined Types: AccountId &
TransactionType

AccountId – member account identification
• last name (capitalized, single name)
• account number (9 digits)

public class AccountId {

private String lastName;

private double accountNumber;

}

TransactionType – transaction request type
• create, delete, deposit, withdraw, transfer

public enum TransactionType {

CREATE , DELETE , DEPOSIT ,

WITHDRAW , TRANSFER

}



Main Program
For now: The main program defines the starting
point for the entire application
• may or may not be terminating
• controls the sequencing of operations
• may employ local variables for temporary use
• retains little or no information

public class TransactionManager {

public static void main(String [] args) {

// ...

}

}

Transaction
Manager



Functional Decomposition
Traditionally, modularity was achieved by means of
top-down functional decomposition
• main program embodies the entire functionality
of the system

• procedures at levels below decompose it into
subfunctions or modules

• clean design enforces a policy of
• process encapsulation
• balanced levels of abstraction

In object-oriented design, functional decomposition
is present
• at the top layers of the design
• in the design of complex methods



Functional Decomposition: Transaction
Manager

import managers.RequestManager;

import managers.MembershipManager;

import managers.AccountsManager;

public class TransactionManager {

public static void main(String [] args) {

RequestManager requestManager =

new RequestManager ();

MembershipManager membershipManager =

new MembershipManager ();

AccountsManager accountsManager =

new AccountsManager ();

// ...

}

}



Object Instantiation
A simple way to code an object:
• define the right class
• provide access to the class definition
• instantiate one or more objects as needed

Define class Account inside AccountsManager
• private fields:

• AccountId (last name, account number–type
defined earlier) and balance

• public methods:
• deposit(amount), debit(amount), balance()
• accountType() – the last two digits of the account

number

• Create one or more instances within the body
of the Accounts Manager



Inheritance & Specialization
Objects that relate to each other may still need to
be different
Inheritance allows classes to extend a base class

• the latter captures all the common features

• the former adds capabilities specific to an
object subtype



Inheritance & Specialization: Account
Accounts can be of two types:

• Checking – they receive a fixed dividend each
month

• Savings – they are credited a fixed interest
based on the average balance of each month
with the daily balance being determined at
midnight each day



Inheritance & Specialization: Account
Design changes:

• the Transaction Manager needs access to the
system date and time

Subclassing implications:

• Checking requires a new method payDividend
• Savings requires

• a new private field balanceHistory
• a new public method updateHistory
• a new public method postInterest



Specialization: Checking & Savings

public class Savings extends Account {

private float[] balanceHistory;

private int day;

public void updateHistory () {

// ...

}

public void postInterest () {

// ...

}

}

public class Checking extends Account {

public void payDividend(float amount) {

// ...

}

}



Abstract Methods: Account Revisited
The class account may require a method backup
• the actual implementation is account type and
system specific

The solution is to define backup as an abstract

method
• force Checking and Savings to provide the
details

• allow the two subclasses to have different
backup approaches, if needed

public abstract class Account {

public abstract void backup ();

// ...

}

No overall design
changes required



Implementing Interfaces
An interface is a class that provides no
implementation for its methods

• no code to execute

A derived class can extend a single base class

• for implementation reasons

A class may implement multiple interfaces

• MyClass implements Interface1, Interface2



Implementing Interfaces: Another
Perspective on Account

Some of the requirements on the definition of
Account:

• may be related to being a bank account

• may be related to being an insured account

Different requirements can be captured by different
interfaces



Implementing Interfaces: Another
Perspective on Account

public interface BankAccount {

// ...

}

public interface InsuredAccount {

void debitFee ();

// ...

}

public abstract class Account

implements BankAccount , InsuredAccount {

public abstract void backup ();

// ...

}



Aggregation & Object Composition
Complex objects are constructed through object
composition

• the methods of the composite object are coded
using methods of nested objects

• these subordinate objects are private

• these subordinate objects should be
independent of each other

• the relation between the composite and
subordinate objects is called aggregation

• this relation between the objects is created by
proper composition of classes



Hiding: Minor
One form of specialization entails hiding methods of
the superclass

• method is overridden to generate exception if
invoked

public class MinorSavings extends Savings {

@Override

public void withdraw(float amount)

throws TransactionException {

throw new TransactionException("Minors are "

+ "not permitted to withdraw "

+ "from savings accounts.");

}

}



Designing with Classes
The philosophy of this course:

• focus on design

• exploit language features to realize the design

• keep the design language-independent

Implementation does not require an object-oriented
language
A design strategy that is class-centered (often used
in practice)

• limits implementation options
• may fail

• to provide adequate encapsulation
• to convey clarity of the design


