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Class Construct
Class is the fundamental programming concept in Java

• fields
• methods
• modifiers

• public vs
private vs
protected

• static
• final
• abstract

• Programs are structured in
terms of classes

• Objects are instances of
classes

• Execution entails the
creation and manipulation
of objects



Class Definition
A class can be defined in several ways:

• by defining the fields and methods it provides
• by implementing an existing interface
• by extending an existing class

If class C extends class S

• C is called a subclass, derived class, or child class
• S is called a superclass, base class, or parent class
• C inherits all the fields and methods associated
with S

• C can add fields and methods
• C can override methods (and hide fields) but they
can still be accessed by referring to super



Inheritance Illustrated

Manager jane = new Manager ();

jane.setSalary (120000.0);

jane.setBonus (50000.0);

System.out.println(jane.getSalary ());

What is the intended control flow?



Inheritance Illustrated
public class Employee {

private double salary;

public void setSalary(double salary) {

this.salary = salary;

}

public double getSalary () {

return salary;

}

}

public class Manager extends Employee {

private double bonus = 0;

public void setBonus(double amount) {

bonus = amount;

}

public double getSalary () {

return salary + bonus;

}

}

What is the error?



Inheritance Illustrated
public class Employee {

private double salary;

public void setSalary(double salary) {

this.salary = salary;

}

public double getSalary () {

return salary;

}

}

public class Manager extends Employee {

private double bonus = 0;

public void setBonus(double amount) {

bonus = amount;

}

public double getSalary () {

return salary + bonus; salary field not visible

}

}

What is the error?



Inheritance Illustrated
public class Employee {

private double salary;

public void setSalary(double salary) {

this.salary = salary;

}

public double getSalary () {

return salary;

}

}

public class Manager extends Employee {

private double bonus = 0;

public void setBonus(double amount) {

bonus = amount;

}

public double getSalary () {

return getSalary () + bonus;

}

}

What is the error?



Inheritance Illustrated
public class Employee {

private double salary;

public void setSalary(double salary) {

this.salary = salary;

}

public double getSalary () {

return salary;

}

}

public class Manager extends Employee {

private double bonus = 0;

public void setBonus(double amount) {

bonus = amount;

}

public double getSalary () {

return getSalary () + bonus; Infinite recursion

}

}

What is the error?



Inheritance Illustrated
public class Employee {

private double salary;

public void setSalary(double salary) {

this.salary = salary;

}

public double getSalary () {

return salary;

}

}

public class Manager extends Employee {

private double bonus = 0;

public void setBonus(double amount) {

bonus = amount;

}

public double getSalary () {

return super.getSalary () + bonus;

}

}



Case Study: Credit Union
Consider a system that supports the basic
operations of a Credit Union:

• manage membership in the credit union by
adding and removing individual members

• manage accounts
• account creation and closing
• deposit and withdrawal of funds
• fund transfers among accounts belonging to the

same member

• accept and process transaction requests
originating with the bank teller



Representative Design Solution
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Coding Tasks
1. Define application-specific data types

• tailored to the application
• used consistently across the system
• simplifying the programming task

2. Code procedures and limit access by controlling
scope

3. Build classes required to manage the object
portfolio



User-Defined Types
Basic application concepts are abstracted as
user-defined data types

• ensure continuity with the requirements level

• simplify programming

Such types can vary in complexity

• class with multiple public fields

• class with multiple private fields and extractor
methods

• class with private fields and public methods



User-Defined Types: AccountId &
TransactionType

AccountId – member account identification
• last name (capitalized, single name)
• account number (9 digits)

public class AccountId {

private String lastName;

private double accountNumber;

}

TransactionType – transaction request type
• create, delete, deposit, withdraw, transfer

public enum TransactionType {

CREATE , DELETE , DEPOSIT ,

WITHDRAW , TRANSFER

}



Main Program
For now: The main program defines the starting
point for the entire application
• may or may not be terminating
• controls the sequencing of operations
• may employ local variables for temporary use
• retains little or no information

public class TransactionManager {

public static void main(String [] args) {

// ...

}

}

Transaction
Manager



Functional Decomposition
Traditionally, modularity was achieved by means of
top-down functional decomposition
• main program embodies the entire functionality
of the system

• procedures at levels below decompose it into
subfunctions or modules

• clean design enforces a policy of
• process encapsulation
• balanced levels of abstraction

In object-oriented design, functional decomposition
is present
• at the top layers of the design
• in the design of complex methods



Functional Decomposition: Transaction
Manager

import managers.RequestManager;

import managers.MembershipManager;

import managers.AccountsManager;

public class TransactionManager {

public static void main(String [] args) {

RequestManager requestManager =

new RequestManager ();

MembershipManager membershipManager =

new MembershipManager ();

AccountsManager accountsManager =

new AccountsManager ();

// ...

}

}



Object Instantiation
A simple way to code an object:
• define the right class
• provide access to the class definition
• instantiate one or more objects as needed

Define class Account inside AccountsManager
• private fields:

• AccountId (last name, account number–type
defined earlier) and balance

• public methods:
• deposit(amount), debit(amount), balance()
• accountType() – the last two digits of the account

number

• Create one or more instances within the body
of the Accounts Manager



Inheritance & Specialization
Objects that relate to each other may still need to
be different
Inheritance allows classes to extend a base class

• the latter captures all the common features

• the former adds capabilities specific to an
object subtype



Inheritance & Specialization: Account
Accounts can be of two types:

• Checking – they receive a fixed dividend each
month

• Savings – they are credited a fixed interest
based on the average balance of each month
with the daily balance being determined at
midnight each day



Inheritance & Specialization: Account
Design changes:

• the Transaction Manager needs access to the
system date and time

Subclassing implications:

• Checking requires a new method payDividend
• Savings requires

• a new private field balanceHistory
• a new public method updateHistory
• a new public method postInterest



Specialization: Checking & Savings

public class Savings extends Account {

private float[] balanceHistory;

private int day;

public void updateHistory () {

// ...

}

public void postInterest () {

// ...

}

}

public class Checking extends Account {

public void payDividend(float amount) {

// ...

}

}



Abstract Methods: Account Revisited
The class account may require a method backup
• the actual implementation is account type and
system specific

The solution is to define backup as an abstract

method
• force Checking and Savings to provide the
details

• allow the two subclasses to have different
backup approaches, if needed

public abstract class Account {

public abstract void backup ();

// ...

}

No overall design
changes required



Implementing Interfaces
An interface is a class that provides no
implementation for its methods

• no code to execute

A derived class can extend a single base class

• for implementation reasons

A class may implement multiple interfaces

• MyClass implements Interface1, Interface2



Implementing Interfaces: Another
Perspective on Account

Some of the requirements on the definition of
Account:

• may be related to being a bank account

• may be related to being an insured account

Different requirements can be captured by different
interfaces



Implementing Interfaces: Another
Perspective on Account

public interface BankAccount {

// ...

}

public interface InsuredAccount {

void debitFee ();

// ...

}

public abstract class Account

implements BankAccount , InsuredAccount {

public abstract void backup ();

// ...

}



Aggregation & Object Composition
Complex objects are constructed through object
composition

• the methods of the composite object are coded
using methods of nested objects

• these subordinate objects are private

• these subordinate objects should be
independent of each other

• the relation between the composite and
subordinate objects is called aggregation

• this relation between the objects is created by
proper composition of classes



Hiding: Minor
One form of specialization entails hiding methods of
the superclass

• method is overridden to generate exception if
invoked

public class MinorSavings extends Savings {

@Override

public void withdraw(float amount)

throws TransactionException {

throw new TransactionException("Minors are "

+ "not permitted to withdraw "

+ "from savings accounts.");

}

}



Designing with Classes
The philosophy of this course:

• focus on design

• exploit language features to realize the design

• keep the design language-independent

Implementation does not require an object-oriented
language
A design strategy that is class-centered (often used
in practice)

• limits implementation options
• may fail

• to provide adequate encapsulation
• to convey clarity of the design


