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What is a Data Structure?
A data structure is defined by:

• an organization of the data being stored

• a set of operations for effective access to this
data

Algorithmic complexity (efficiency) is directly tied to
data organization

• searching for an element in an unsorted array
takes linear time: 232 = 4, 294, 967, 296

• searching for an element in a sorted array takes
logarithmic time: 32

Key to computing efficiency is reducing algorithmic
complexity



Relation to Abstract Data Types
Abstract Data Type specifications are given in terms
of:
• an abstract data representation
• a set of operations over the abstract
representation

• signature or interface
• semantics

A data structure is a concrete realization of the
ADT
• it should preserve encapsulation
• it can be analyzed with respect to performance

• at the formal level – time and space complexity
• at the execution level – runtime and resource usage



Common Data Structures
• Some basic data structures are built into the
language

• arrays
• Some data structures are provided in standard
libraries

• linked lists
• hash tables
• search trees

• Other data structures need to be explicitly coded
• trees
• graphs

• Generic types facilitate generality and reuse
• Java collections expand the range of ready to use
common data structures

• designed, coded, and optimized
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Illustration: Defining a Linked List in Java
public class LinkedList {

private Node first;

private Node last;

public LinkedList () {

last = first = null;

}

public void add(Object element) {

// add element to the end

}

public void remove () {

// remove element from the front

}

public Object getHead () {

// return the head of the list

}

public LinkedList getTail () {

// return the tail of the list

}

}



Illustration: Defining a Node
public class Node {

private Node next;

private Object element;

public Node(Object element , Node next) {

this.element = element;

this.next = next;

}

public Object getElement () { return element; }

public void setElement () {

this.element = element;

}

public Node getNext () { return next; }

public void setNext(Node next) {

this.next = next;

}

}



Even better: Generics!

public class LinkedList <T> {

private Node <T> first;

private Node <T> last;

//...

public class Node <T> {

private Node <T> next;

private T element;

//...



Design Concerns: Memory Leaks

• Memory leaks are serious programming errors –
hard to debug

• They happen when references are maintained
to objects no longer in use

• The garbage collector cannot reclaim the space



Illustration: Memory Leaks

• Consider a new constructor creating a very first
node

public LinkedList(Object element) {

Node veryFirst = new Node(element , null);

first = last = veryFirst;

}

• What if very first is a private field of
LinkedList?

public LinkedList(Object element) {

veryFirst = new Node(element , null);

first = last = veryFirst;

}



Illustration: Memory Leaks
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Design Concerns: Entanglement

• Assignment statements such as x = y result in
both x and y referring to the same object

• changes carried out by invoking a method
x.set(v)

• alter the object
• are visible to y when invoking y.get()

• Often this is not the desired outcome



Object Cloning
Cloning is a powerful, but controversial, feature in
Java
• Java provides two forms of cloning

• shallow – a new object is created and the fields of
the original are copied without change
Default strategy provided by Object.clone()

• deep – a new object is created and cloning is
applied recursively to each field
Must override clone() to implement this strategy

• Great care needs to be exercised to apply it
correctly

• It is generally recommended to provide a copy
constructor



Illustration: Incorrect Cloning

@Override

public Node clone() {

try {

return (Node) super.clone ();

}

catch (CloneNotSupportedException e) {

throw new InternalError(e.toString ());

}

}

Using default clone implementation will just copy all
fields. (This can be okay if all fields are primitives
and/or immutable objects.)



Illustration: Incorrect Clone Result
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Illustration: Desired Copy Action
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This is not cloning, rather tailored object
duplication.



Design Concerns: Encapsulation Cracks
The object creator retaining access:

• exposes access to the data structure internals

• introduces side effects that break the class
contract

• cloning/copying is one way to avoid this design
flaw



Illustration: Creator Retaining Access
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Design Concerns: Encapsulation Cracks
An internal object is returned to the caller

• providing access to the data structure internals

• enabling side effects that break the class
contract

• creating the potential to break the integrity of
the data structure



Illustration: Returning Internal Object
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Collections
Collections or containers:

• allow programmers to hold and organize sets of
objects

• . . . in useful and efficient ways

• . . . as part of consistent and flexible framework

• Java provides us with many standard collection
interfaces and implementations



Core Collection Interfaces

• Collection – root of the collection hierarchy

• Set – no duplicates

• List – ordered collection, sequence

• Queue – holds elements for processing

• Deque – double ended queue

• Map – maps keys to values



Collection Interface

• size, isEmpty

• contains

• add, addAll

• remove, removeAll, retainAll, clear

• toArray

• iterator (because Collection implements
Iterable)

Optional methods that are not supported by a
specific implementation throw
UnsupportedOperationException (read the
documentation!)



List

• add, addAll – add to end of the list

• remove – removes first occurrance

• iterator, listIterator

• indexOf, lastIndexOf – find index of elememt

• get, set – access element at given index

• subList – view portion of list as a List

What data structure could you use to implement a
List?
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Queue

• Insert – add, offer

• Remove – remove, poll

• Examine – element, peek

Queues usually use FIFO order. PriorityQueue
will use natural ordering or a Comparator.

What data structure could you use to implement a
Queue?
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Map
Maps keys to values. Does not implement
Collection itself, but has three collection views
• keySet – Set of the keys
• values – Collection of values
• entrySet – Set of key-value mappings.

Beware of using mutable objects as keys!
• put – associate a key with a value
• get – get value associated with key
• remove – remove key/value mapping
• containsKey, containsValue

What data structure could you use to implement a
Map?
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Iterator and Iterable

Iterator has three methods
• hasNext – Are there more elements?
• next – Return the next element
• remove – Remove the last element
returned (optional)

Iterable only has one method
• iterator – returns an Iterator
• Implementing this interface allows
object to be target of for-each



Iterator

• The ability to examine an entire collection of
objects is a helpful feature

• Java provides the Iterable interface specifically
for this purpose

• A specific iterator may or may not take a
snapshot first

• If not, use of other methods may affect the
results



Iterator: Protecting Encapsulation
The iterator:

• is made available outside the collection

• does not reveal anything about the internal
organization

• has access to the internal organization of the
data



Iterator: Protecting Encapsulation
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Data Structure Design
Research has led to the development of an arsenal
of specialized data structures

• Search and use them when developing a new
program

• Don’t reinvent the wheel



Example: Skip List
One such data structure is a Skip List:

• optimized for fast search in ordered lists

• multiple linked lists form express lanes
supporting list traversal

• stops along each lane are determined using
some probability p



Illustration: Skip List
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Example: Game of Life
The Game of Life is a cellular automaton devised by
the British mathematician John Horton Conway in
1970.

• Given a finite, two-dimensional, orthogonal grid
of square cells.

• Each cell is in one of two possible states, Live
or Dead.

• The initial pattern constitutes the ’seed’ of the
system.



Example: Game of Life

• Every cell interacts with its eight neighbors.
• At each step in time:

• any live cell with fewer than two live neighbors
dies, as if by loneliness

• any live cell with more than three live neighbors
dies, as if by overcrowding

• any dead cell with exactly three live neighbors
comes to life

• A new generation is created by applying the
rules simultaneously to every cell.



Implementing Game of Life
How do we represent the game?

• Simple implementation: Two dimensional
boolean array N by N

• What if N is very large?

• What if game is very sparse?
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