
CS 351
Design of Large Programs
Complex Data Structures

Brooke Chenoweth

University of New Mexico

Spring 2024



What is a Data Structure?
A data structure is defined by:

• an organization of the data being stored

• a set of operations for effective access to this
data

Algorithmic complexity (efficiency) is directly tied to
data organization

• searching for an element in an unsorted array
takes linear time: 232 = 4, 294, 967, 296

• searching for an element in a sorted array takes
logarithmic time: 32

Key to computing efficiency is reducing algorithmic
complexity



Relation to Abstract Data Types
Abstract Data Type specifications are given in terms
of:
• an abstract data representation
• a set of operations over the abstract
representation

• signature or interface
• semantics

A data structure is a concrete realization of the
ADT
• it should preserve encapsulation
• it can be analyzed with respect to performance

• at the formal level – time and space complexity
• at the execution level – runtime and resource usage



Common Data Structures
• Some basic data structures are built into the
language

• arrays
• Some data structures are provided in standard
libraries

• linked lists
• hash tables
• search trees

• Other data structures need to be explicitly coded
• trees
• graphs

• Generic types facilitate generality and reuse
• Java collections expand the range of ready to use
common data structures

• designed, coded, and optimized



Illustration: Linked List

E

element E

first

last

head

tail



Illustration: Defining a Linked List in Java
public class LinkedList {

private Node first;

private Node last;

public LinkedList () {

last = first = null;

}

public void add(Object element) {

// add element to the end

}

public void remove () {

// remove element from the front

}

public Object getHead () {

// return the head of the list

}

public LinkedList getTail () {

// return the tail of the list

}

}



Illustration: Defining a Node
public class Node {

private Node next;

private Object element;

public Node(Object element , Node next) {

this.element = element;

this.next = next;

}

public Object getElement () { return element; }

public void setElement () {

this.element = element;

}

public Node getNext () { return next; }

public void setNext(Node next) {

this.next = next;

}

}



Even better: Generics!

public class LinkedList <T> {

private Node <T> first;

private Node <T> last;

//...

public class Node <T> {

private Node <T> next;

private T element;

//...



Design Concerns: Memory Leaks

• Memory leaks are serious programming errors –
hard to debug

• They happen when references are maintained
to objects no longer in use

• The garbage collector cannot reclaim the space



Illustration: Memory Leaks

• Consider a new constructor creating a very first
node

public LinkedList(Object element) {

Node veryFirst = new Node(element , null);

first = last = veryFirst;

}

• What if very first is a private field of
LinkedList?

public LinkedList(Object element) {

veryFirst = new Node(element , null);

first = last = veryFirst;

}



Illustration: Memory Leaks

very first
(never changed)

first
last



Design Concerns: Entanglement

• Assignment statements such as x = y result in
both x and y referring to the same object

• changes carried out by invoking a method
x.set(v)

• alter the object
• are visible to y when invoking y.get()

• Often this is not the desired outcome



Object Cloning
Cloning is a powerful, but controversial, feature in
Java
• Java provides two forms of cloning

• shallow – a new object is created and the fields of
the original are copied without change
Default strategy provided by Object.clone()

• deep – a new object is created and cloning is
applied recursively to each field
Must override clone() to implement this strategy

• Great care needs to be exercised to apply it
correctly

• It is generally recommended to provide a copy
constructor



Illustration: Incorrect Cloning

@Override

public Node clone() {

try {

return (Node) super.clone ();

}

catch (CloneNotSupportedException e) {

throw new InternalError(e.toString ());

}

}

Using default clone implementation will just copy all
fields. (This can be okay if all fields are primitives
and/or immutable objects.)



Illustration: Incorrect Clone Result

data value

original clone

Fields are just blindly duplicated.



Illustration: Desired Copy Action

data value copy of
data value

original “clone”

This is not cloning, rather tailored object
duplication.



Design Concerns: Encapsulation Cracks
The object creator retaining access:

• exposes access to the data structure internals

• introduces side effects that break the class
contract

• cloning/copying is one way to avoid this design
flaw



Illustration: Creator Retaining Access

first

last

data valueOriginal Owner

Original owner of data may still have access to it.



Design Concerns: Encapsulation Cracks
An internal object is returned to the caller

• providing access to the data structure internals

• enabling side effects that break the class
contract

• creating the potential to break the integrity of
the data structure



Illustration: Returning Internal Object

first

last

caller

Returned node becomes accessible to caller.



Collections
Collections or containers:

• allow programmers to hold and organize sets of
objects

• . . . in useful and efficient ways

• . . . as part of consistent and flexible framework

• Java provides us with many standard collection
interfaces and implementations



Core Collection Interfaces

• Collection – root of the collection hierarchy

• Set – no duplicates

• List – ordered collection, sequence

• Queue – holds elements for processing

• Deque – double ended queue

• Map – maps keys to values



Collection Interface

• size, isEmpty

• contains

• add, addAll

• remove, removeAll, retainAll, clear

• toArray

• iterator (because Collection implements
Iterable)

Optional methods that are not supported by a
specific implementation throw
UnsupportedOperationException (read the
documentation!)



List

• add, addAll – add to end of the list

• remove – removes first occurrance

• iterator, listIterator

• indexOf, lastIndexOf – find index of elememt

• get, set – access element at given index

• subList – view portion of list as a List

What data structure could you use to implement a
List?



List

• add, addAll – add to end of the list

• remove – removes first occurrance

• iterator, listIterator

• indexOf, lastIndexOf – find index of elememt

• get, set – access element at given index

• subList – view portion of list as a List

What data structure could you use to implement a
List?



Queue

• Insert – add, offer

• Remove – remove, poll

• Examine – element, peek

Queues usually use FIFO order. PriorityQueue
will use natural ordering or a Comparator.

What data structure could you use to implement a
Queue?



Queue

• Insert – add, offer

• Remove – remove, poll

• Examine – element, peek

Queues usually use FIFO order. PriorityQueue
will use natural ordering or a Comparator.

What data structure could you use to implement a
Queue?



Map
Maps keys to values. Does not implement
Collection itself, but has three collection views
• keySet – Set of the keys
• values – Collection of values
• entrySet – Set of key-value mappings.

Beware of using mutable objects as keys!
• put – associate a key with a value
• get – get value associated with key
• remove – remove key/value mapping
• containsKey, containsValue

What data structure could you use to implement a
Map?



Map
Maps keys to values. Does not implement
Collection itself, but has three collection views
• keySet – Set of the keys
• values – Collection of values
• entrySet – Set of key-value mappings.

Beware of using mutable objects as keys!
• put – associate a key with a value
• get – get value associated with key
• remove – remove key/value mapping
• containsKey, containsValue

What data structure could you use to implement a
Map?



Iterator and Iterable

Iterator has three methods
• hasNext – Are there more elements?
• next – Return the next element
• remove – Remove the last element
returned (optional)

Iterable only has one method
• iterator – returns an Iterator
• Implementing this interface allows
object to be target of for-each



Iterator

• The ability to examine an entire collection of
objects is a helpful feature

• Java provides the Iterable interface specifically
for this purpose

• A specific iterator may or may not take a
snapshot first

• If not, use of other methods may affect the
results



Iterator: Protecting Encapsulation
The iterator:

• is made available outside the collection

• does not reveal anything about the internal
organization

• has access to the internal organization of the
data



Iterator: Protecting Encapsulation

first

last

affected by
remove returned by

next

iterator
access to
internal structure

needed
to speed
up remove



Data Structure Design
Research has led to the development of an arsenal
of specialized data structures

• Search and use them when developing a new
program

• Don’t reinvent the wheel



Example: Skip List
One such data structure is a Skip List:

• optimized for fast search in ordered lists

• multiple linked lists form express lanes
supporting list traversal

• stops along each lane are determined using
some probability p



Illustration: Skip List

10 20 30 40 50 60 80 90levels



Example: Game of Life
The Game of Life is a cellular automaton devised by
the British mathematician John Horton Conway in
1970.

• Given a finite, two-dimensional, orthogonal grid
of square cells.

• Each cell is in one of two possible states, Live
or Dead.

• The initial pattern constitutes the ’seed’ of the
system.



Example: Game of Life

• Every cell interacts with its eight neighbors.
• At each step in time:

• any live cell with fewer than two live neighbors
dies, as if by loneliness

• any live cell with more than three live neighbors
dies, as if by overcrowding

• any dead cell with exactly three live neighbors
comes to life

• A new generation is created by applying the
rules simultaneously to every cell.



Implementing Game of Life
How do we represent the game?

• Simple implementation: Two dimensional
boolean array N by N

• What if N is very large?

• What if game is very sparse?



Implementing Game of Life
How do we represent the game?

• Simple implementation: Two dimensional
boolean array N by N

• What if N is very large?

• What if game is very sparse?



Implementing Game of Life
How do we represent the game?

• Simple implementation: Two dimensional
boolean array N by N

• What if N is very large?

• What if game is very sparse?



Implementing Game of Life
How do we represent the game?

• Simple implementation: Two dimensional
boolean array N by N

• What if N is very large?

• What if game is very sparse?


