
CS 351
Design of Large Programs

Strategy Pattern

Brooke Chenoweth

University of New Mexico

Spring 2024



Example: Duck Simulator

• Game has many duck species swimming and
quacking

• Initial design has Duck superclass extended by
other types

• Parent class has abstract display method
implemented by child classes



Duck Class Hierarchy

Duck

quack()
swim()
display()
. . .

MallardDuck

display()

RedheadDuck

display()

lots of other
duck types



Requirements Change

• Let’s make ducks fly!

• How hard can it be?

• Let’s add a fly method to our Duck class and
all the children will inherit it!



Requirements Change

• Let’s make ducks fly!

• How hard can it be?

• Let’s add a fly method to our Duck class and
all the children will inherit it!



Duck Classes with Flying

Duck

quack()
swim()
display()
fly()

MallardDuck

display()

RedheadDuck

display()

RubberDuck

display()
quack()

Rubber ducks
shouldn’t fly!



Duck Classes with Flying

Duck

quack()
swim()
display()
fly()

MallardDuck

display()

RedheadDuck

display()

RubberDuck

display()
quack()

Rubber ducks
shouldn’t fly!



Just override fly for RubberDuck?

Duck

quack()
swim()
display()
fly()

MallardDuck

display()

RedheadDuck

display()

RubberDuck

display()
quack()
fly()

DecoyDuck

display()
quack()
fly()

Override more
for decoy duck?



Just override fly for RubberDuck?

Duck

quack()
swim()
display()
fly()

MallardDuck

display()

RedheadDuck

display()

RubberDuck

display()
quack()
fly()

DecoyDuck

display()
quack()
fly()

Override more
for decoy duck?



Just override fly for RubberDuck?

Duck

quack()
swim()
display()
fly()

MallardDuck

display()

RedheadDuck

display()

RubberDuck

display()
quack()
fly()

DecoyDuck

display()
quack()
fly()

Override more
for decoy duck?



Use an interface?

Flyable

fly()

Quackable

quack()

Duck

swim()
display()

MallardDuck

display()
fly()
quack()

RedheadDuck

display()
fly()
quack()

RubberDuck

display()
quack()

DecoyDuck

display()

This has a lot of duplicate coding!



Use an interface?

Flyable

fly()

Quackable

quack()

Duck

swim()
display()

MallardDuck

display()
fly()
quack()

RedheadDuck

display()
fly()
quack()

RubberDuck

display()
quack()

DecoyDuck

display()

This has a lot of duplicate coding!



Design Principles
• Identify the aspects of your application that
vary and separate them from what stays the
same.

• Encapsulate what varies
• Program to an interface, not to an implementation
• Favor composition over inheritance

• For our example:
• Pull the duck behavior out of the duck class

• A Duck has a flying behaviour
• A Duck has a quacking behaviour



Design Principles
• Identify the aspects of your application that
vary and separate them from what stays the
same.

• Encapsulate what varies
• Program to an interface, not to an implementation
• Favor composition over inheritance

• For our example:
• Pull the duck behavior out of the duck class
• A Duck has a flying behaviour
• A Duck has a quacking behaviour



Program to an Interface: Flying

FlyBehavior

fly()

FlyWithWings

fly()

FlyNot

fly()

Flying implementation
for ducks with wings

Implementation for
ducks that can’t fly



Program to an Interface: Quacking

QuackBehavior

quack()

Quack

quack()

Squeak

quack()

QuackNot

quack()



Extension and Reuse

• Ducks delegate the flying and quacking
behaviors

• Now, other classes can use our quacking and
flying behaviors since they’re not specific to
ducks

• We can easily add new quacking and flying
styles without impacting our ducks!



Duck Classes again

Duck

FlyBehavior flyBehavior
QuackBehavior quackBehavior

MallardDuck

display()

RedheadDuck

display()

RubberDuck

display()

DecoyDuck

display()



Example code

public class Duck {

protected QuackBehavior quackBehavior;

// ... more

public void doQuack () {

quackBehavior.quack ();

}

}

• Instead of quacking on its own, a Duck
delegates that behavior to the quackBehavior
object

• It doesn’t matter what kind of Duck it is; all it
matters is a Duck knows how to quack.



How to Make Ducks Quack and Fly?

public class MallardDuck extends Duck {

public MallardDuck () {

quackBehavior = new Quack ();

flyBehavior = new FlyWithWings ();

}

public void display () {

System.out.println("I’m a real Mallard duck!");

}

}

This is not quite right yet because we’re still
programming to the implementation (i.e., we have
to know about the specific Quack behavior and
FlyWithWings behavior).
We can fix this with another pattern. . . later. . .



Can Ducks learn to Quack and Fly?

• How could you teach a Duck a new way to
quack or a new way to fly?

• Add new methods to the Duck class:

public void setFlyBehavior(FlyBehavior fb){

flyBehavior = fb;

}

public void setQuackBehavior(QuackBehavior qb){

quackBehavior = fb;

}



Favor Composition over Inheritance

• Stated another way. . . “has-a is better than
is-a”

• Ducks have quacking behaviors and flying
behaviors instead of being Quackable and
Flyable

• Composition is good because:
• It allows you to encapsulate a family of algorithms

into a set of classes (the Strategy pattern)
• It allows you to easily change the behavior at

runtime



The Strategy Pattern
The Strategy Pattern defines a family of algorithms,
encapsulates each one, and makes them
interchangeable.
Strategy lets the algorithm vary independently from
the clients that use it.


