
CS 351
Design of Large Programs

Observer Pattern

Brooke Chenoweth

University of New Mexico

Spring 2024

A Weather Monitoring Application

• We have a weather station with humidity,
temperature, and pressure sensors

• We are implementing a WeatherData object
that pulls data from the weather station.

• Create an app that uses the WeatherData
object to update three different displays:

• current conditions
• weather stats
• forecast

What Needs to be Done?

WeatherData

getTemperature()
getHumidity()
getPressure()
measurementsChanged()

/**

* Call this method whenever

* measurements are updated

*/

public void measurementsChanged (){

// your code goes here

}

Update three
different displays

Problem Specification

• The WeatherData class has getters and setters
for temperature, humidity, and pressure

• The measurementsChanged() method is
called anytime new weather data is available

• We don’t know or care how!

• We need to implement three different display
elements that use the weather data

• The system must be expandable, in case others
want to add other display elements later

A First Attempt to Coding
public class WeatherData {

// instance variable declarations

public void measurementsChanged (){

float temp = getTemperature ();

float humidity = getHumidity ();

float pressure = getPressure ();

currentConditionsDisplay.update(temp , humidity , pressure);

statisticsDisplay.update(temp , humidity , pressure);

forecastDisplay.update(temp , humidity , pressure);

}

// other methods

}

• What’s wrong?

• Coding to implementations: adding displays requires
changing the program

• Encapsulate stuff that changes!

Not so bad: Here’s a
common interface!

A First Attempt to Coding
public class WeatherData {

// instance variable declarations

public void measurementsChanged (){

float temp = getTemperature ();

float humidity = getHumidity ();

float pressure = getPressure ();

currentConditionsDisplay.update(temp , humidity , pressure);

statisticsDisplay.update(temp , humidity , pressure);

forecastDisplay.update(temp , humidity , pressure);

}

// other methods

}

• What’s wrong?
• Coding to implementations: adding displays requires
changing the program

• Encapsulate stuff that changes!

Not so bad: Here’s a
common interface!

A First Attempt to Coding
public class WeatherData {

// instance variable declarations

public void measurementsChanged (){

float temp = getTemperature ();

float humidity = getHumidity ();

float pressure = getPressure ();

currentConditionsDisplay.update(temp , humidity , pressure);

statisticsDisplay.update(temp , humidity , pressure);

forecastDisplay.update(temp , humidity , pressure);

}

// other methods

}

• What’s wrong?
• Coding to implementations: adding displays requires
changing the program

• Encapsulate stuff that changes!

Not so bad: Here’s a
common interface!

A First Attempt to Coding
public class WeatherData {

// instance variable declarations

public void measurementsChanged (){

float temp = getTemperature ();

float humidity = getHumidity ();

float pressure = getPressure ();

currentConditionsDisplay.update(temp , humidity , pressure);

statisticsDisplay.update(temp , humidity , pressure);

forecastDisplay.update(temp , humidity , pressure);

}

// other methods

}

• What’s wrong?
• Coding to implementations: adding displays requires
changing the program

• Encapsulate stuff that changes!

Not so bad: Here’s a
common interface!

Publish/Subscribe
• Just like newspapers and magazines

• email lists
• RSS feeds
• following someone on Twitter

• You subscribe and receive any new additions

• You unsubscribe and stop receiving anything

The Observer Pattern
The Observer Pattern defines a one-to-many
dependency between objects so that when one
object changes state, all its dependences are notified
and updated automatically.

The Observer Pattern

Subject interface

addObserver()
removeObserver()
notifyObservers()

Observer interface

update()

observers

ConcreteSubject

addObserver()
removeObserver()
notifyObservers()

ConcreteObserver

update()
subject

The Observer Pattern
• Objects use the Subject interface to
(de)register as observers

• Each subject can have many observers

• All potential observers need to implement the
Observer interface and provide the update()
method

• A concrete subject always implements the
Subject interface and the
notifyObservers() method

• Concrete observers can be any class that
implements the Observer interface and
registers with a concrete subject

The Power of Loose Coupling
• The only thing a subject knows about an
observer is that it implements a given interface

• We can add new observers at any time
• We never need to modify the subject to add
new types of observers

• We can reuse subjects or observers
independently of each other

• Changes to either the subject or an observer
will not affect each other

• Loosely coupled designs allow us to build
flexible OO systems that can handle
change because they minimize the
interdependencies between objects.

The Power of Loose Coupling
• The only thing a subject knows about an
observer is that it implements a given interface

• We can add new observers at any time

• We never need to modify the subject to add
new types of observers

• We can reuse subjects or observers
independently of each other

• Changes to either the subject or an observer
will not affect each other

• Loosely coupled designs allow us to build
flexible OO systems that can handle
change because they minimize the
interdependencies between objects.

The Power of Loose Coupling
• The only thing a subject knows about an
observer is that it implements a given interface

• We can add new observers at any time
• We never need to modify the subject to add
new types of observers

• We can reuse subjects or observers
independently of each other

• Changes to either the subject or an observer
will not affect each other

• Loosely coupled designs allow us to build
flexible OO systems that can handle
change because they minimize the
interdependencies between objects.

The Power of Loose Coupling
• The only thing a subject knows about an
observer is that it implements a given interface

• We can add new observers at any time
• We never need to modify the subject to add
new types of observers

• We can reuse subjects or observers
independently of each other

• Changes to either the subject or an observer
will not affect each other

• Loosely coupled designs allow us to build
flexible OO systems that can handle
change because they minimize the
interdependencies between objects.

The Power of Loose Coupling
• The only thing a subject knows about an
observer is that it implements a given interface

• We can add new observers at any time
• We never need to modify the subject to add
new types of observers

• We can reuse subjects or observers
independently of each other

• Changes to either the subject or an observer
will not affect each other

• Loosely coupled designs allow us to build
flexible OO systems that can handle
change because they minimize the
interdependencies between objects.

The Power of Loose Coupling
• The only thing a subject knows about an
observer is that it implements a given interface

• We can add new observers at any time
• We never need to modify the subject to add
new types of observers

• We can reuse subjects or observers
independently of each other

• Changes to either the subject or an observer
will not affect each other

• Loosely coupled designs allow us to build
flexible OO systems that can handle
change because they minimize the
interdependencies between objects.

Weather Data Interfaces

public interface Subject {

public void registerObserver(Observer o);

public void removeObserver(Observer o);

public void notifyObservers ();

}

public interface Observer {

public void update(float temp ,

float humidity ,

float pressure);

}

public interface DisplayElement {

public void display ();

}

called to notify
all observers

when Subject’s
state changes

Adding an interface for
all display types.

What’s wrong here?

Weather Data Interfaces

public interface Subject {

public void registerObserver(Observer o);

public void removeObserver(Observer o);

public void notifyObservers ();

}

public interface Observer {

public void update(float temp ,

float humidity ,

float pressure);

}

public interface DisplayElement {

public void display ();

}

called to notify
all observers

when Subject’s
state changes

Adding an interface for
all display types.

What’s wrong here?

Weather Data Interfaces

public interface Subject {

public void registerObserver(Observer o);

public void removeObserver(Observer o);

public void notifyObservers ();

}

public interface Observer {

public void update(float temp ,

float humidity ,

float pressure);

}

public interface DisplayElement {

public void display ();

}

called to notify
all observers

when Subject’s
state changes

Adding an interface for
all display types.

What’s wrong here?

Weather Data Interfaces

public interface Subject {

public void registerObserver(Observer o);

public void removeObserver(Observer o);

public void notifyObservers ();

}

public interface Observer {

public void update(float temp ,

float humidity ,

float pressure);

}

public interface DisplayElement {

public void display ();

}

called to notify
all observers

when Subject’s
state changes

Adding an interface for
all display types.

What’s wrong here?

Implementing the Subject Interface

public class WeatherData implements Subject {

private List <Observer > observers;

private float temperature;

private float humidity;

private float pressure;

public WeatherData () {

observers = new ArrayList <>();

}

public void registerObserver(Observer o) {

observers.add(o);

}

public void removeObserver(Observer o) {

observers.remove(o);

}

Notify Methods

public void notifyObservers () {

for(Observer observer : observers) {

observer.update(temperature , humidity , pressure);

}

}

public void measurementsChanged () {

notifyObservers ();

}

A Display Element
public class CurrentConditionsDisplay

implements Observer , DisplayElement {

private float temperature;

private float humidity;

private Subject weatherData;

public CurrentConditionsDisplay(Subject weatherData) {

this.weatherData = weatherData;

weatherData.registerObserver(this);

}

public void update(float temp , float humidity , float pressure) {

this.temperature = temp;

this.humidity = humidity;

display ();

}

public void display () {

System.out.println("Current conditions: " + temperature

+ "F degrees and " + humidity + "% humidity");

}

}

Object Design Diagram

General
Display

Statistics
Display

Forecast
Display

WeatherData Object

Weather Station

Triggers
notification received from WeatherData object
interrupt that triggers measurementsChange

