
CS 351
Design of Large Programs

Singleton Pattern

Brooke Chenoweth

University of New Mexico

Spring 2024



The Notion of a Singleton
There are many objects we only need one of:

• Thread pools, caches, dialog boxes, logging
objects, device drivers, etc.

• In many cases, instantiating more than one of
such objects creates all kinds of problems

• incorrect program behavior
• resource overuse
• inconsistent results



The Notion of a Singleton

• We could just use global (static) variables

• The Singleton pattern gives all of the upsides
without the downsides
e.g., object isn’t forced to be created when the
application starts

• Basically, the Singleton is used anytime you
want a set of objects in the application to use
the same global resource



Towards a Singleton

• In Java, how do you create a single object?

new MyClass()

• And if you call that a second time?
You get a second, distinct object

• How could you prevent such instantiation?

public class MyClass {

private MyClass () {}

}

• Who can use such a private constructor?
Only code within MyClass



Towards a Singleton

• In Java, how do you create a single object?
new MyClass()

• And if you call that a second time?

You get a second, distinct object

• How could you prevent such instantiation?

public class MyClass {

private MyClass () {}

}

• Who can use such a private constructor?
Only code within MyClass



Towards a Singleton

• In Java, how do you create a single object?
new MyClass()

• And if you call that a second time?
You get a second, distinct object

• How could you prevent such instantiation?

public class MyClass {

private MyClass () {}

}

• Who can use such a private constructor?
Only code within MyClass



Towards a Singleton

• In Java, how do you create a single object?
new MyClass()

• And if you call that a second time?
You get a second, distinct object

• How could you prevent such instantiation?

public class MyClass {

private MyClass () {}

}

• Who can use such a private constructor?

Only code within MyClass



Towards a Singleton

• In Java, how do you create a single object?
new MyClass()

• And if you call that a second time?
You get a second, distinct object

• How could you prevent such instantiation?

public class MyClass {

private MyClass () {}

}

• Who can use such a private constructor?
Only code within MyClass



The Next Step

• How can you get access to code within MyClass

if you can’t instantiate it?

• What does this do?

public class MyClass {

public static MyClass getInstance () {

// code goes here

}

}

• How would you call that?
MyClass.getInstance();

• How would you fill out the implementation to
make sure that only a single instance of MyClass

is ever created?



The Next Step

• How can you get access to code within MyClass

if you can’t instantiate it?

• What does this do?

public class MyClass {

public static MyClass getInstance () {

// code goes here

}

}

• How would you call that?
MyClass.getInstance();

• How would you fill out the implementation to
make sure that only a single instance of MyClass

is ever created?



The Next Step

• How can you get access to code within MyClass

if you can’t instantiate it?

• What does this do?

public class MyClass {

public static MyClass getInstance () {

// code goes here

}

}

• How would you call that?

MyClass.getInstance();

• How would you fill out the implementation to
make sure that only a single instance of MyClass

is ever created?



The Next Step

• How can you get access to code within MyClass

if you can’t instantiate it?

• What does this do?

public class MyClass {

public static MyClass getInstance () {

// code goes here

}

}

• How would you call that?
MyClass.getInstance();

• How would you fill out the implementation to
make sure that only a single instance of MyClass

is ever created?



The Next Step

• How can you get access to code within MyClass

if you can’t instantiate it?

• What does this do?

public class MyClass {

public static MyClass getInstance () {

// code goes here

}

}

• How would you call that?
MyClass.getInstance();

• How would you fill out the implementation to
make sure that only a single instance of MyClass

is ever created?



The Classic Singleton

public class Singleton {

private static Singleton uniqueInstance;

// additional instance variables

private Singleton () {}

public static Singleton getInstance () {

if (uniqueInstance == null) {

uniqueInstance = new Singleton ();

}

return uniqueInstance;

}

// additional methods

}



The Singleton Pattern
The Singleton Pattern ensures a class has only one
instance and provides a global point of access to
that instance.



The Singleton Class Diagram

Singleton

static uniqueInstance

static getInstance()



We have a problem. . .

• The Singleton pattern, as we have
implemented it, is not thread safe

• When multiple threads invoke the getInstance()

method, multiple instances of the object may
be created!



Possible solution

• One simple solution is to use eager
instantiation instead of lazy instantiation

public class Singleton {

private static Singleton uniqueInstance =

new Singleton ();

private Singleton () {}

public static Singleton getInstance () {

return uniqueInstance;

}

}

• We will need to return to this when we study
concurrent programming!



Some Questions
• What’s the difference between a Singleton and
a class in which all of the methods and
variables are static?

• Using the Singleton pattern instead allows for
complex initialization (especially if that
initialization involves other classes and objects)

• Without the Singleton pattern, you can still
implement these things, but the result are common
“order of initialization” bugs that are hard to pin
down

• Why can’t you subclass a Singleton?
• You can’t extend a class with a private constructor
• All of the derived classes share the same static

variable “instance”



Some Questions
• What’s the difference between a Singleton and
a class in which all of the methods and
variables are static?

• Using the Singleton pattern instead allows for
complex initialization (especially if that
initialization involves other classes and objects)

• Without the Singleton pattern, you can still
implement these things, but the result are common
“order of initialization” bugs that are hard to pin
down

• Why can’t you subclass a Singleton?
• You can’t extend a class with a private constructor
• All of the derived classes share the same static

variable “instance”



Some Questions
• What’s the difference between a Singleton and
a class in which all of the methods and
variables are static?

• Using the Singleton pattern instead allows for
complex initialization (especially if that
initialization involves other classes and objects)

• Without the Singleton pattern, you can still
implement these things, but the result are common
“order of initialization” bugs that are hard to pin
down

• Why can’t you subclass a Singleton?

• You can’t extend a class with a private constructor
• All of the derived classes share the same static

variable “instance”



Some Questions
• What’s the difference between a Singleton and
a class in which all of the methods and
variables are static?

• Using the Singleton pattern instead allows for
complex initialization (especially if that
initialization involves other classes and objects)

• Without the Singleton pattern, you can still
implement these things, but the result are common
“order of initialization” bugs that are hard to pin
down

• Why can’t you subclass a Singleton?
• You can’t extend a class with a private constructor
• All of the derived classes share the same static

variable “instance”


