CS 351
Design of Large Programs
The Builder Pattern

Brooke Chenoweth

University of New Mexico

Spring 2024



Example: Car Class

public class Car {
private int doors;
private int wheels;
private int seats;

public Car(int doors, int wheels, int seats)

this.doors = doors;
this.wheels = wheels;
this.seats = seats;

}

// getters, other methods, etc.



Let's make some cars!

® Car cl = new Car(2, 4, 4);
® Car c2 = new Car(4, 4, 5);
® Car c3 = new Car(4, 4, 7);



Let's make some cars!

® Car cl = new Car(2, 4, 4);
A 2-door car with four wheels and four seats.

® Car c2 = new Car(4, 4, 5);

® Car c3

new Car(4, 4, 7);



Let's make some cars!

® Car cl = new Car(2, 4, 4);
A 2-door car with four wheels and four seats.

® Car c2 = new Car(4, 4, 5);
A 4-door car with four wheels and five seats.

® Car c3 = new Car(4, 4, 7);



Let's make some cars!

® Car cl = new Car(2, 4, 4);

A 2-door car with four wheels and four seats.
® Car c2 = new Car(4, 4, 5);

A 4-door car with four wheels and five seats.
® Car c3 = new Car(4, 4, 7);

A 4-door car with four wheels and seven seats.



Let's make some cars!

® Car cl = new Car(2, 4, 4);
A 2-door car with four wheels and four seats.

® Car c2 = new Car(4, 4, 5);
A 4-door car with four wheels and five seats.

® Car c3 = new Car(4, 4, 7);
A 4-door car with four wheels and seven seats.
Most cars have 4 wheels, maybe make another
constructor with a default value?



Let's make some cars!

Car cl = new Car(2, 4, 4);

A 2-door car with four wheels and four seats.
Car c2 = new Car(4, 4, 5);

A 4-door car with four wheels and five seats.
Car c¢3 = new Car(4, 4, 7);

A 4-door car with four wheels and seven seats.
Most cars have 4 wheels, maybe make another
constructor with a default value?

Car c4 = new Car(4, 7, 4);



Let's make some cars!

Car cl = new Car(2, 4, 4);
A 2-door car with four wheels and four seats.

Car c2 = new Car(4, 4, 5);
A 4-door car with four wheels and five seats.

Car c¢3 = new Car(4, 4, 7);

A 4-door car with four wheels and seven seats.
Most cars have 4 wheels, maybe make another
constructor with a default value?

Car c4 = new Car(4, 7, 4);

A 4-door car with seven wheels and four seats?
Arguments of the same type are easy to
confuse.



Problems with Constructors

® Too many arguments — easily confused

e Optional arguments — overload constructors
with defaults?

® Too many constructors



Use setters instead?

Car car = new Car();
car.setWheels (4);
car.setSeats (2);



Use setters instead?

Car

car.
car.

car = new Car();
setWheels (4);
setSeats (2);

We forgot to set the doors!
Do we have reasonable default values?
What if we didn't finish configuring the object?

Does it even make sense to change the number
of wheels after the Car is constructed?



The Builder Pattern

Use the Builder Pattern to encapulate the
construction of a product and allow it to be
constructed in steps.



CarBuilder

public class CarBuilder {
private int doors;
private int wheels = 4;
private int seats;

public void setDoors(int doors) {
this.doors = doors;

}

public void setWheels(int wheels) {
this.wheels = wheels;

}

public void setSeats(int seats) {
this.seats = seats;

}

public Car getCar () {
return new Car (doors, wheels, seats);

}



Let's make a Car!

CarBuilder cb = new CarBuilder ();
cb.setDoors (2);

cb.setSeats (4);

Car car = cb.getCar();

e We can build up a complex object with a step
by step approach.
® We could add error checking before actually

constructing the Car object to make sure we've
properly configured all the fields.

® \We could use a builder to create an immutable
object.



CarBuilder with Fluent Interface

public class CarBuilder {
private int doors;
private int wheels = 4;
private int seats;

public CarBuilder setDoors(int doors) {
this.doors = doors;
return this;

}

public CarBuilder setWheels(int wheels) {
this.wheels = wheels;
return this;

}

public CarBuilder setSeats(int seats) {
this.seats = seats;
return this;

¥

public Car getCar () {
return new Car (doors, wheels, seats);

+
}



Fluent Interface

The Builder pattern is often implemented with a
fluent interface, where each method in the builder
returns a reference to the builder object itself so we
can easily chain the methods together.

Car car = new CarBuilder ().setDoors(2)
.setSeats (4)
.getCar ();

This coding idiom of returning this and method

chaining is independent of the Builder pattern, but

crops up often enough that it's worth mentioning

here.



