
CS 351
Design of Large Programs

Simple Factories, Factory Methods,
and Abstract Factories

Brooke Chenoweth

University of New Mexico

Spring 2024



Creating Objects

• . . . it’s more than just new

• Some key tenets
• Instantiation shouldn’t always be done in public
• Constructor usages often lead to unintended

coupling

• Remember the note in the Strategy pattern?
• When we say “new” to create a new object by

calling a constructor, we’re directly programming
to an implementation

•
Duck duck = new MallardDuck ();

We want to
use the interface. . .

But we’re forced to
create an instance
of a concrete class!



Creating Objects

• . . . it’s more than just new

• Some key tenets
• Instantiation shouldn’t always be done in public
• Constructor usages often lead to unintended

coupling

• Remember the note in the Strategy pattern?
• When we say “new” to create a new object by

calling a constructor, we’re directly programming
to an implementation

•
Duck duck = new MallardDuck ();

We want to
use the interface. . .

But we’re forced to
create an instance
of a concrete class!



Creating Objects

• . . . it’s more than just new

• Some key tenets
• Instantiation shouldn’t always be done in public
• Constructor usages often lead to unintended

coupling

• Remember the note in the Strategy pattern?
• When we say “new” to create a new object by

calling a constructor, we’re directly programming
to an implementation

•
Duck duck = new MallardDuck ();

We want to
use the interface. . .

But we’re forced to
create an instance
of a concrete class!



It’s More Complicated than That
Duck duck;

if (picnic ){

duck = new MallardDuck ();

} else if (hunting) {

duck = new DecoyDuck ();

} else if (inBathTub) {

duck = new RubberDuck ();

}

• . . . especially when you think about the fact
that things might change

• E.g., you add a new type of duck and have to
figure out when/how to instantiate it

• And you make new kinds of Ducks in all
different parts of your code



“Open for Extension, Closed for
Modification”

A key design goal:

• Allow classes to be easily extended to
incorporate new behavior

• Without modifying existing code
• Because every time you modify it, you risk

introducing new bugs

This results in designs that are resilient to change
but also flexible enough to accept new functionality
to meet changing requirements



Back to Identifying Things that Change

public Pizza orderPizza () {

Pizza pizza = new Pizza ();

pizza.prepare ();

pizza.bake ();

pizza.cut();

pizza.box();

return pizza;

}

It’d really be nice to use an
abstract class here, but,
alas, one cannot instantiate
an abstract class



Back to Identifying Things that Change

public Pizza orderPizza () {

Pizza pizza = new Pizza ();

pizza.prepare ();

pizza.bake ();

pizza.cut();

pizza.box();

return pizza;

}

It’d really be nice to use an
abstract class here, but,
alas, one cannot instantiate
an abstract class



Back to Identifying Things that Change
public Pizza orderPizza(String type) {

Pizza pizza;

if(type.equals("cheese")) {

pizza = new CheezePizza ();

} else if(type.equals("greek")) {

pizza = new GreekPizza ();

} else if(type.equals("pepperoni")) {

pizza = new PepperoniPizza ();

}

pizza.prepare ();

pizza.bake ();

pizza.cut();

pizza.box();

return pizza;

}

Added argument
for type of pizza

Make concrete pizza
based on type

Each pizza type knows
how to prepare itself



Back to Identifying Things that Change
public Pizza orderPizza(String type) {

Pizza pizza;

if(type.equals("cheese")) {

pizza = new CheezePizza ();

} else if(type.equals("greek")) {

pizza = new GreekPizza ();

} else if(type.equals("pepperoni")) {

pizza = new PepperoniPizza ();

}

pizza.prepare ();

pizza.bake ();

pizza.cut();

pizza.box();

return pizza;

}

Added argument
for type of pizza

Make concrete pizza
based on type

Each pizza type knows
how to prepare itself



Back to Identifying Things that Change
public Pizza orderPizza(String type) {

Pizza pizza;

if(type.equals("cheese")) {

pizza = new CheezePizza ();

} else if(type.equals("greek")) {

pizza = new GreekPizza ();

} else if(type.equals("pepperoni")) {

pizza = new PepperoniPizza ();

}

pizza.prepare ();

pizza.bake ();

pizza.cut();

pizza.box();

return pizza;

}

Added argument
for type of pizza

Make concrete pizza
based on type

Each pizza type knows
how to prepare itself



Back to Identifying Things that Change
public Pizza orderPizza(String type) {

Pizza pizza;

if(type.equals("cheese")) {

pizza = new CheezePizza ();

} else if(type.equals("greek")) {

pizza = new GreekPizza ();

} else if(type.equals("pepperoni")) {

pizza = new PepperoniPizza ();

}

pizza.prepare ();

pizza.bake ();

pizza.cut();

pizza.box();

return pizza;

}

Added argument
for type of pizza

Make concrete pizza
based on type

Each pizza type knows
how to prepare itself



Change. . . it’s Coming
• The pizza business is a trendy one

• Greek pizza is so yesterday. . .
• But with all of the people moving in from CA,

we’ve got increasing demands for veggie pizza.
And some weirdos who want clam pizza

• What to do?

• The orderPizza method is not closed for
modification

• What varies? What stays the same?

• The choices of pizza types change over time
• The process (algorithm) for filling an order stays

the same



Change. . . it’s Coming
• The pizza business is a trendy one

• Greek pizza is so yesterday. . .

• But with all of the people moving in from CA,
we’ve got increasing demands for veggie pizza.
And some weirdos who want clam pizza

• What to do?

• The orderPizza method is not closed for
modification

• What varies? What stays the same?

• The choices of pizza types change over time
• The process (algorithm) for filling an order stays

the same



Change. . . it’s Coming
• The pizza business is a trendy one

• Greek pizza is so yesterday. . .
• But with all of the people moving in from CA,

we’ve got increasing demands for veggie pizza.
And some weirdos who want clam pizza

• What to do?

• The orderPizza method is not closed for
modification

• What varies? What stays the same?

• The choices of pizza types change over time
• The process (algorithm) for filling an order stays

the same



Change. . . it’s Coming
• The pizza business is a trendy one

• Greek pizza is so yesterday. . .
• But with all of the people moving in from CA,

we’ve got increasing demands for veggie pizza.
And some weirdos who want clam pizza

• What to do?

• The orderPizza method is not closed for
modification

• What varies? What stays the same?

• The choices of pizza types change over time
• The process (algorithm) for filling an order stays

the same



Change. . . it’s Coming
• The pizza business is a trendy one

• Greek pizza is so yesterday. . .
• But with all of the people moving in from CA,

we’ve got increasing demands for veggie pizza.
And some weirdos who want clam pizza

• What to do?

• The orderPizza method is not closed for
modification

• What varies? What stays the same?

• The choices of pizza types change over time
• The process (algorithm) for filling an order stays

the same



Change. . . it’s Coming
• The pizza business is a trendy one

• Greek pizza is so yesterday. . .
• But with all of the people moving in from CA,

we’ve got increasing demands for veggie pizza.
And some weirdos who want clam pizza

• What to do?

• The orderPizza method is not closed for
modification

• What varies? What stays the same?

• The choices of pizza types change over time
• The process (algorithm) for filling an order stays

the same



Change. . . it’s Coming
• The pizza business is a trendy one

• Greek pizza is so yesterday. . .
• But with all of the people moving in from CA,

we’ve got increasing demands for veggie pizza.
And some weirdos who want clam pizza

• What to do?

• The orderPizza method is not closed for
modification

• What varies? What stays the same?
• The choices of pizza types change over time

• The process (algorithm) for filling an order stays
the same



Change. . . it’s Coming
• The pizza business is a trendy one

• Greek pizza is so yesterday. . .
• But with all of the people moving in from CA,

we’ve got increasing demands for veggie pizza.
And some weirdos who want clam pizza

• What to do?

• The orderPizza method is not closed for
modification

• What varies? What stays the same?
• The choices of pizza types change over time
• The process (algorithm) for filling an order stays

the same



Information Hiding?

• What is it we’re supposed to do with the stuff
that changes?

• Encapsulate it!

• Practically, since the thing that’s changing is
object creation, we need an object that
encapsulates object creation

• This object is called a factory
• Then the orderPizza method is a client of the

factory
• Anytime it needs a pizza, it goes to the factory to

request that one is created



The Pizza Factory

public class SimplePizzaFactory {

public Pizza createPizza(String type) {

Pizza pizza = null;

if (type.equals("cheese")) {

pizza = new CheesePizza ();

} else if (type.equals("pepperoni") {

pizza = new PepperoniPizza ();

} else if (type.equals("clam") {

pizza = new ClamPizza ();

} else if (type.equals("veggie") {

pizza = new VeggiePizza ();

}

return pizza;

}

}



Wait, what?

• Well, that seems silly. All we did is copy the
code out of the orderPizza method, but it
still has all of the same problems. . .

• Does it?

• The SimplePizzaFactory might have lots of
clients (not just the orderPizza method)

• That was why we want to encapsulate the
thing that changes!

• Also, the orderPizza method no longer needs
to know anything at all about concrete Pizzas!



Wait, what?

• Well, that seems silly. All we did is copy the
code out of the orderPizza method, but it
still has all of the same problems. . .

• Does it?

• The SimplePizzaFactory might have lots of
clients (not just the orderPizza method)

• That was why we want to encapsulate the
thing that changes!

• Also, the orderPizza method no longer needs
to know anything at all about concrete Pizzas!



Wait, what?

• Well, that seems silly. All we did is copy the
code out of the orderPizza method, but it
still has all of the same problems. . .

• Does it?

• The SimplePizzaFactory might have lots of
clients (not just the orderPizza method)

• That was why we want to encapsulate the
thing that changes!

• Also, the orderPizza method no longer needs
to know anything at all about concrete Pizzas!



Wait, what?

• Well, that seems silly. All we did is copy the
code out of the orderPizza method, but it
still has all of the same problems. . .

• Does it?

• The SimplePizzaFactory might have lots of
clients (not just the orderPizza method)

• That was why we want to encapsulate the
thing that changes!

• Also, the orderPizza method no longer needs
to know anything at all about concrete Pizzas!



Wait, what?

• Well, that seems silly. All we did is copy the
code out of the orderPizza method, but it
still has all of the same problems. . .

• Does it?

• The SimplePizzaFactory might have lots of
clients (not just the orderPizza method)

• That was why we want to encapsulate the
thing that changes!

• Also, the orderPizza method no longer needs
to know anything at all about concrete Pizzas!



Simple Factory: Not Quite a Pattern
But it is a commonly used programming idiom

PizzaStore

orderPizza()

Simple
PizzaFactory

createPizza()

Pizza

prepare()
bake()
cut()
box()

CheesePizza VeggiePizza

Create method
is often static



Simple Factory: Not Quite a Pattern
But it is a commonly used programming idiom

PizzaStore

orderPizza()

Simple
PizzaFactory

createPizza()

Pizza

prepare()
bake()
cut()
box()

CheesePizza VeggiePizza

Create method
is often static



Using the Simple Factory
public class PizzaStore {

private SimplePizzaFactory factory;

public PizzaStore(SimplePizzaFactory factory) {

this.factory = factory;

}

public Pizza orderPizza(String type) {

Pizza pizza = factory.createPizza(type);

pizza.prepare ();

pizza.bake ();

pizza.cut();

pizza.box();

return pizza;

}

}

Factory creates
the pizza now



Using the Simple Factory
public class PizzaStore {

private SimplePizzaFactory factory;

public PizzaStore(SimplePizzaFactory factory) {

this.factory = factory;

}

public Pizza orderPizza(String type) {

Pizza pizza = factory.createPizza(type);

pizza.prepare ();

pizza.bake ();

pizza.cut();

pizza.box();

return pizza;

}

}

Factory creates
the pizza now



Franchising the Pizza Store
• Now you want to spread your successful
business

• We want to localize the pizza making activities to
the PizzaStore class (For quality control)

• But we want to give regional franchises the liberty
to have their own pizza styles

• General framework:
• Make the PizzaStore abstract
• Put the createPizza method back in

PizzaStore, but make it abstract
• Create a PizzaStore subclass for every regional

type of pizza



The Abstract Method

public abstract class PizzaStore {

public Pizza orderPizza(String type) {

Pizza pizza = createPizza(type);

pizza.prepare ();

pizza.bake ();

pizza.cut();

pizza.box();

return pizza;

}

abstract Pizza createPizza(String type);

}

This is the
“factory method”



The Abstract Method

public abstract class PizzaStore {

public Pizza orderPizza(String type) {

Pizza pizza = createPizza(type);

pizza.prepare ();

pizza.bake ();

pizza.cut();

pizza.box();

return pizza;

}

abstract Pizza createPizza(String type);

}

This is the
“factory method”



Delegating to the Subclasses

• We’ve perfected the pizza ordering method,
and it stays the same across all of the
subclasses

• But now the regional franchises can differ in
the style of pizza they make

• E.g., thin crust in New York, thick crust in Chicago

• While the orderPizza method looks like it’s
defined in the PizzaStore class, this class is
abstract

• It can’t actually do anything
• So when it is executed, it is actually executing in

the context of a concrete subclass
• This context gets determined when the (abstract)

method createPizza gets called.



Delegating to the Subclasses

PizzaStore

createPizza()
orderPizza()

NewYorkStyle
PizzaStore

createPizza()

ChicagoStyle
PizzaStore

createPizza()



What’s a Franchise Look Like?
• Bonus. The franchises get all of the benefits of
the perfected PizzaStore ordering process

• All they have to do is define how to create pizzas!

public class NewYorkPizzaStore extends PizzaStore {

public Pizza createPizza(String type) {

if (type.equals("cheese")) {

return new NewYorkStyleCheesePizza ();

} else if (type.equals("pepperoni") {

return new NewYorkStylePepperoniPizza ();

} else if (type.equals("clam") {

return new NewYorkStyleClamPizza ();

} else if (type.equals("veggie") {

return new NewYorkStyleVeggiePizza ();

} else return null;

}

}



A General Factory Method
abstract Product factoryMethod(String type)

• A factory method is abstract so the subclasses
are counted on to handle object creation

• The factory method isolates the client (the
code in the superclass) from knowing what
kind of concrete Product is created

• A factory method returns a Product that is
typically used within methods defined in the
superclass

• A factory method may be parameterized (or
not) to select among several variations of a
Product



Ordering a Pizza
1. First, the customer needs to get a NY PizzaStore:

PizzaStore nyPizzaStore = new NewYorkPizzaStore();

2. Now the pizza store can accept our order
nyPizzaStore.orderPizza("cheese");

3. The orderPizza method calls the createPizza
method
Pizza pizza = createPizza("cheese");

• Remember the createPizza method is implemented in
the subclass, so we’re automagically getting a NY style
cheese pizza here

4. The orderPizza method finishes preparing our pizza
pizza.prepare(); pizza.bake(); pizza.cut(); pizza.box();

• These methods are defined in the abstract PizzaStore
class, which doesn’t need to know which kind of pizza it is
in order to follow the steps



We need pizzas for whole solution
public abstract class Pizza {

protected String name;

protected String dough;

protected String sauce;

protected List <String > toppings = new ArrayList <>();

public void prepare () {

System.out.println("Preparing " + name);

System.out.println("Tossing dough ... ");

System.out.println("Adding sauce ... ");

System.out.println("Adding toppings: ");

for (String topping : toppings) {

System.out.println(" " + topping );

}

}

public void bake() { System.out.println("Baking pizza"); }

public void cut() {

System.out.println("Cutting pizza into diagonal slices");

}

public void box() { System.out.println("Putting pizza in box"); }

}



We need pizzas for whole solution

public class NewYorkStyleCheesePizza extends Pizza {

public NewYorkStyleCheesePizza () {

name = "NY Style Sauce and Cheese Pizza";

dough = "Thin Crust Dough";

sauce = "Marinara Sauce";

toppings.add("Grated Reggiano Cheese");

}

}



We need pizzas for whole solution

public class ChicagoStyleCheesePizza extends Pizza {

public ChicagoStyleCheesePizza () {

name = "Chicago Style Deep Dish Cheese Pizza";

dough = "Extra Thick Crust Dough";

sauce = "Plum Tomato Sauce";

toppings.add("Shredded Mozzarella Cheese");

}

public void cut() {

System.out.println("Cutting pizza"

+ " into square slices");

}

}



The Entire Solution

Product

ConcreteProduct

Creator

factoryMethod()
anotherMethod()

ConcreteCreator

factoryMethod()

Parallel Class Hierarchies: creators and products



The Factory Method Pattern
The Factory Method Pattern defines an interface
for creating an object but lets subclasses decide
which class to instantiate.
Factory Method lets a class defer instantiation to
subclasses



Our “Dumb” Pizza Store Revisited

• Imagine going back to the beginning and
creating a PizzaStore that amassed all of the
decision making

• Inside the createPizza method of this pizza
store, I would just have a huge, nested set of if
statements to determine which style of pizza
and then which type of pizza to create



What Does This Look Like?
public class PainfulPizzaStore extends PizzaStore {

public Pizza createPizza(String style , String type) {

if(style.equals("NewYork") {

if (type.equals("cheese")) {

return new NewYorkStyleCheesePizza ();

} else if (type.equals("pepperoni") {

return new NewYorkStylePepperoniPizza ();

} else if (type.equals("clam") {

return new NewYorkStyleClamPizza ();

} else if (type.equals("veggie") {

return new NewYorkStyleVeggiePizza ();

} else return null;

} else if(style.equals("Chicago") {

if (type.equals("cheese")) {

return new ChicagoStyleCheesePizza ();

} else if (type.equals("pepperoni") {

return new ChicagoStylePepperoniPizza ();

} else if (type.equals("clam") {

return new ChicagoStyleClamPizza ();

} else if (type.equals("veggie") {

return new ChicagoStyleVeggiePizza ();

} else return null;

} else return null;

}

//...

}



What Does This Look Like?

• This PizzaStore depends on all the concrete
pizza types, since we create them directly.

• If the implementation of the pizza classes
change, we may have to modify PizzaStore.

• Every new kind of pizza creates another
dependency for PizzaStore



What Does This Look Like?

PizzaStore

NewYorkStyle
CheesePizza

NewYorkStyle
PepperoniPizza

NewYorkStyle
VeggiePizza

ChicagoStyle
CheesePizza

ChicagoStyle
PepperoniPizza

ChicagoStyle
VeggiePizza



Another Design Principle

• This seems like a bad idea. We’re definitely not
encapsulating for change.

• If we change any of the concrete pizza classes,
we have to change the PizzaStore because it
depends on them

• Instead we should depend upon abstractions.
Do not depend upon concrete classes

• High level components should not depend on
low-level components; instead, both should
depend on abstractions



Another Design Principle

• For example, in the previous pizza store, the
store depended on all of the pizza types

• Instead, the pizza store should depend on the
abstract notion of Pizza, and the concrete
pizza types should too

• This is exactly what the Factory Method
pattern we applied did!



Dependency Inversion

PizzaStore

Pizza

NewYorkStyle
CheesePizza

NewYorkStyle
PepperoniPizza

NewYorkStyle
VeggiePizza

ChicagoStyle
CheesePizza

ChicagoStyle
PepperoniPizza

ChicagoStyle
VeggiePizza



Guidelines that Help
• Only guidelines, not rules to follow
• No variable should hold a reference to a concrete
class

• If you use new, you’ll be holding a reference to a
concrete class

• Use a factory to get around that!
• No class should derive from a concrete class

• If you do, you’re depending on the concrete class
• Instead, derive from an abstraction (like an interface or

an abstract class)
• No method should override an implemented method
of any of its base classes

• If you do, then your base class wasn’t really an
abstraction

• The methods implemented in the base class are meant
to be shared by the derived classes



Controlling Pizza Quality

• Some of your franchises have gone rogue and
are substituting inferior ingredients to increase
their per-pizza profit

• Time to enter the pizza ingredient business

• You’ll make all the ingredients yourself and ship
them to your franchises

• But this is not so easy. . .

• You have the same product families (e.g.,
dough, sauce, cheese, veggies, meats, etc.) but
different implementations (e.g., thin vs. thick
or mozzarella vs. reggiano) based on region



The Ingredient Factory Interface

public interface PizzaIngredientFactory {

public Dough createDough ();

public Sauce createSauce ();

public Cheese createCheese ();

public Veggies [] createVeggies ();

public Pepperoni createPepperoni ();

public Clams createClams ();

}



Then What?

1. For each region, create a subclass of the
PizzaIngredientFactory that implements
the concrete methods

2. Implement a set of ingredients to be used with
the factory (e.g., ReggianoCheese,
RedPeppers, ThickCrustDough)
These can be shared among regions if
appropriate

3. Integrate these new ingredient factories into
the PizzaStore code



The New York Ingredient Factory
public class NewYorkPizzaIngredientFactory

implements PizzaIngredientFactory {

public Dough createDough () {

return new ThinCrustDough ();

}

public Sauce createSauce () {

return new MarinaraSauce ();

}

public Cheese createCheese () {

return new ReggianoCheese ();

}

public Veggies [] createVeggies () {

Veggies veggies [] = {new Garlic(), new Onion(),

new Mushroom(), new RedPepper ()};

return veggies;

}

public Pepperoni createPepperoni () {

return new SlicedPepperoni ();

}

public Clams createClam () {

return new FreshClams ();

}

}



Connecting to the Pizzas
• Now, we need to force our franchise owners to
only use factory produced ingredients

• Before, the abstract Pizza class just had
Strings to name its ingredients

• It implemented the prepare() method (and
bake(), cut(), and box())

• The concrete Pizza classes just defined the
constructor which, in some cases, specialized the
ingredients (and sometimes cut corners) and
maybe overrode other methods

• Now, the abstract Pizza class has actual
ingredient objects

• And the prepare() method is abstract
• The concrete pizza classes will collect the

ingredients from the factories to prepare the pizza



Concrete Pizzas

• Now, we only need one CheesePizza class
(before we had a ChicagoCheesePizza and a
NewYorkCheesePizza)

• When we create a CheesePizza, we pass it an
IngredientFactory, which will provide the
(regional) ingredients



An Example Pizza

public class CheesePizza extends Pizza {

PizzaIngredientFactory ingredientFactory;

public CheesePizza(PizzaIngredientFactory ingredientFactory ){

this.ingredientFactory = ingredientFactory;

}

void prepare () {

System.out.println("Preparing " + name);

dough = ingredientFactory.createDough ();

sauce = ingredientFactory.createSauce ();

cheese = ingredientFactory.createCheese ();

}

}

Which cheese is created is
determined at run time by
the factory passed at
object creation time



An Example Pizza

public class CheesePizza extends Pizza {

PizzaIngredientFactory ingredientFactory;

public CheesePizza(PizzaIngredientFactory ingredientFactory ){

this.ingredientFactory = ingredientFactory;

}

void prepare () {

System.out.println("Preparing " + name);

dough = ingredientFactory.createDough ();

sauce = ingredientFactory.createSauce ();

cheese = ingredientFactory.createCheese ();

}

} Which cheese is created is
determined at run time by
the factory passed at
object creation time



Fixing the Pizza Stores
public class NewYorkPizzaStore extends PizzaStore {

protected Pizza createPizza(String type) {

Pizza pizza = null;

PizzaIngredientFactory ingredientFactory =

new NewYorkPizzaIngredientFactory ();

if (type.equals("cheese")) {

pizza = new CheesePizza(ingredientFactory );

pizza.setName("New York Style Cheese Pizza");

} else if (type.equals("veggie")) {

pizza = new VeggiePizza(ingredientFactory );

pizza.setName("New York Style Veggie Pizza");

} // more of the same ...

return pizza;

}

}

For each type of pizza, we instantiate a new pizza
and give it the factory it needs to get its ingredients



Whew. Recap.

• We provided a means of creating a family of
ingredients for pizzas by introducing a new
type of factory: the abstract factory

• An abstract factory provides an interface for
creating a family of products

• Decouples code from the actual factory that
creates the products

• Makes it easy to implement a variety of factories
that produce products for different contexts (we
used regions, but it could just as easily be different
operating systems, or different “look and feels”)

• We can substitute different factories to get
different behaviors



The Abstract Factory Pattern
The Abstract Factory Pattern provides an
interface for creating families of related or
dependent objects without specifying their concrete
classes.



Factory Method vs. Abstract Factory

• Decouples applications
from specific
implementations

• Creates objects through
inheritance

• Create objects by
extending a class and
overriding a factory
method

• Useful if you don’t
know ahead of time
what concrete classes
will be needed

• Decouples applications
from specific
implementations

• Creates objects through
object composition

• Create objects by
providing an abstract
type for a family of
products

• Subclasses define how
products are produced

• Interface must change if
new products are added


