
CS 351
Design of Large Programs

Command Pattern

Brooke Chenoweth

University of New Mexico

Spring 2024



The Mission: A Remote Control

• Remote has multiple programmable slots. We
can associate each with a different device.

• Each slot has on and and off buttons.

• Remote has a global undo button.

• Vendors have provided classes to control home
automation devices.

• Can we make an API for programming the
remote?



The Remote Control

On OffDevice 1

On OffDevice 2

On OffDevice 3

On OffDevice 4

On OffDevice 5

Undo



The Vendor Classes



Towards a Design

• The remote is simple, but the devices are not!

• So many different method names!

• We need some information hiding and
separation of concerns

• The remote shouldn’t have a bunch of switch
statements that select between devices. . .

• We really need to decouple the requester of the
action from the object that performs the action



Command Objects (in context)
We introduce command objects into the design

• A command object encapsulates a request to
do something (e.g., turn on a light) on a
specific object (e.g., the living room lamp)

• We can then just store a command object for
each button such that when the button is
pressed, the command is invoked

• The button doesn’t have to know anything
about the command



An Analogy: Ordering in a Diner

1. The customer gives the server their order.

2. The server takes the order, places it on the
counter, and says “Order up!”

3. The short-order cook prepares the meal from
the order.



An Analogy: Ordering in a Diner

1. The customer gives the server their order.
• An order slip encapsulates a request to prepare a

meal. Its method orderUp() encapsulates the
actions needed to prepare the meal; it also carries
its own reference to the appropriate Cook

2. The server takes the order, places it on the
counter, and says “Order up!”

3. The short-order cook prepares the meal from
the order.



An Analogy: Ordering in a Diner

1. The customer gives the server their order.
• An order slip encapsulates a request to prepare a

meal. Its method orderUp() encapsulates the
actions needed to prepare the meal; it also carries
its own reference to the appropriate Cook

2. The server takes the order, places it on the
counter, and says “Order up!”

• The server just creates order slips and invokes the
orderUp() method.

3. The short-order cook prepares the meal from
the order.



An Analogy: Ordering in a Diner

1. The customer gives the server their order.
• An order slip encapsulates a request to prepare a

meal. Its method orderUp() encapsulates the
actions needed to prepare the meal; it also carries
its own reference to the appropriate Cook

2. The server takes the order, places it on the
counter, and says “Order up!”

• The server just creates order slips and invokes the
orderUp() method.

3. The short-order cook prepares the meal from
the order.

• The Cook knows how to prepare the meals; but is
completely decoupled from the server (they need
never directly communicate)



The Command Pattern in General

Client

Invoker Command

Receiver

creates
command object

stores

command

re
qu
es
ts

ex
ec
ut
ion

executes
command

pe
rfo
rm
s
ac
tio
ns



The Command Pattern in General

Client

Invoker Command

Receiver

creates
command object

stores

command

re
qu
es
ts

ex
ec
ut
ion

executes
command

pe
rfo
rm
s
ac
tio
ns



The Command Pattern in General

Client

Invoker Command

Receiver

creates
command object

stores

command

re
qu
es
ts

ex
ec
ut
ion

executes
command

pe
rfo
rm
s
ac
tio
ns



The Command Pattern in General

Client

Invoker Command

Receiver

creates
command object

stores

command

re
qu
es
ts

ex
ec
ut
ion

executes
command

pe
rfo
rm
s
ac
tio
ns



A First Command Object

public interface Command {

public void execute ();

}

public class LightOnCommand implements Command {

private Light light;

public LightOnCommand (Light light) {

this.light = light;

}

public void execute () {

light.on();

}

}

Light

on()
off()



Using the Command Object

public class SimpleRemoteControl {

private Command slot;

public SimpleRemoteControl () { }

public void setCommand(Command command) {

slot = command;

}

public void buttonWasPressed () {

slot.execute ();

}

}



A Simple Test of the Remote

public class RemoteControlTest {

public static void main(String [] args) {

SimpleRemoteControl remote =

new SimpleRemoteControl ();

Light light = new Light ();

LightOnCommand lightOn =

new LightOnCommand(light);

remote.setCommand(lightOn );

remote.buttonWasPressed ();

}

}



Can you do it?

• Implement the FaucetOffCommand class

• Here’s the new test code:

public class RemoteControlTest {

public static void main(String [] args) {

SimpleRemoteControl remote =

new SimpleRemoteControl ();

Faucet faucet = new FaucetControl ();

FaucetOffCommand faucetOff =

new FaucetOffCommand(faucet );

remote.setCommand(faucetOff );

remote.buttonWasPressed ();

}

}
FaucetControl

openValve()
closeValve()



Solution

public class FaucetOffCommand implements Command {

private FaucetControl faucet;

public FaucetOffCommand(Faucet faucet) {

this.faucet = faucet;

}

public void execute () {

faucet.closeValve ();

}

}

For a very simple command object, you might
choose to use an anonymous inner class (perhaps
using lambda syntax!) instead of a named
implementation.



Solution

public class FaucetOffCommand implements Command {

private FaucetControl faucet;

public FaucetOffCommand(Faucet faucet) {

this.faucet = faucet;

}

public void execute () {

faucet.closeValve ();

}

}

For a very simple command object, you might
choose to use an anonymous inner class (perhaps
using lambda syntax!) instead of a named
implementation.



The Command Pattern
The Command Pattern encapsulates a request as an
object, thereby letting you parameterize other
objects with different requests, queue or log
requests, and support undoable operations.



The Command Pattern

• The command object encapulates a request by
binding together a set of actions on a specific
receiver.

• Command object only exposes the execute
method.

• When execute is called, causes actions to be
invoked on receiver.

• Other objects don’t know what actions get
performed on what receiver; they just know
that their request will be serviced if they call
execute.



The Command Pattern Class Diagram

Client Invoker

setCommand()

Command
interface

execute()
undo()

Receiver

action() Concrete
Command

execute()
undo()



Back to our Remote. . .

On OffLiving Room Light

On OffKitchen Light

On OffCeiling Fan

On OffGarage Door

On OffParty Mode

Undo



Question
How does the remote know the difference between
the kitchen light and the living room light?

• It doesn’t have to! The Receiver is
encapsulated in the command that is inserted
in the slot.



Question
How does the remote know the difference between
the kitchen light and the living room light?

• It doesn’t have to! The Receiver is
encapsulated in the command that is inserted
in the slot.



Let’s Add Support for the Undo Button

• First, let’s expand the Command interface:

public interface Command {

public void execute ();

public void undo ();

}

• Now, every Command should be undoable



Let’s Add Support for the Undo Button
• So we add an implementation for undo() for
every command that we implement

• E.g., for LightOnCommand, undo() simply calls
light.off()

• Some undo() method implementations are more
complicated; e.g., undoing a change in speed of a
ceiling fan

• All that’s left is to add support to the remote
control to handle tracking which undo()
method to call

• Store the last command executed; if the undo
button is pressed, we can just invoke the undo()
method on that command



Light On with Undo

public class LightOnCommand implements Command {

private Light light;

public LightOnCommand (Light light) {

this.light = light;

}

public void execute () { light.on(); }

public void undo () { light.off (); }

}



Remote with Undo
public class RemoteControl {

private Command [] slots = new Command [10];

private Command recent;

public void setCommand(int index , Command command) {

slot[index] = command;

}

public void buttonWasPressed(int index) {

slot[index]. execute ();

recent = slot[index];

}

public void undoWasPressed () {

if(recent != null) {

recent.undo ();

}

}

}



More Questions
Do I have to have a Receiver?

• A Command object could just implement the
execute() functionality itself; but having the
Command object just pass the invocation from
the Invoker to the Receiver gets the highest
decoupling

How would you implement a history of undo
operations?



More Questions
Do I have to have a Receiver?

• A Command object could just implement the
execute() functionality itself; but having the
Command object just pass the invocation from
the Invoker to the Receiver gets the highest
decoupling

How would you implement a history of undo
operations?



More Questions
Do I have to have a Receiver?

• A Command object could just implement the
execute() functionality itself; but having the
Command object just pass the invocation from
the Invoker to the Receiver gets the highest
decoupling

How would you implement a history of undo
operations?



Remote with Undo History
public class RemoteControl {

private Command [] slots = new Command [10];

private Deque <Command > stack = new LinkedList <>;

public void setCommand(int index , Command command) {

slot[index] = command;

}

public void buttonWasPressed(int index) {

slot[index]. execute ();

stack.push(slot[index ]);

}

public void undoWasPressed () {

if(!stack.isEmpty ()) {

Command recent = stack.pop ();

recent.undo ();

}

}

}


