
CS 351
Design of Large Programs
Adapter Pattern and Facade

Pattern

Brooke Chenoweth

University of New Mexico

Spring 2024



The Adapter Analogy



The OO Adapter



The OO Adapter



The OO Adapter



Writing an Adaptor
Back to Ducks. . . but with interfaces this time:

public interface Duck {

public void quack ();

public void fly ();

}

public class MallardDuck implements Duck {

public void quack() {

System.out.println("Quack");

}

public void fly() {

System.out.println("I’m flying!");

}

}



A New Fowl. . .

public interface Turkey {

public void gobble ();

public void fly ();

}

public class WildTurkey implements Turkey {

public void gobble () {

System.out.println("Gobble gobble");

}

public void fly() {

System.out.println("I’m flying a short amount!");

}

}



Here’s my problem. . .

• I need ducks

• But what I have are turkeys

• Is there any way to turn a turkey into a duck?



The TurkeyAdapter
public class TurkeyAdapter implements Duck {

private Turkey turkey;

public TurkeyAdapter(Turkey turkey) {

this.turkey = turkey;

}

public void quack() {

turkey.gobble ();

}

public void fly() {

for(int i = 0; i < 5; i++) {

turkey.fly ();

}

}

}

Implement the target interface

reference to object we’re adapting

Gobble is like a quack, right?

Turkey’s fly is different than duck’s



The TurkeyAdapter
public class TurkeyAdapter implements Duck {

private Turkey turkey;

public TurkeyAdapter(Turkey turkey) {

this.turkey = turkey;

}

public void quack() {

turkey.gobble ();

}

public void fly() {

for(int i = 0; i < 5; i++) {

turkey.fly ();

}

}

}

Implement the target interface

reference to object we’re adapting

Gobble is like a quack, right?

Turkey’s fly is different than duck’s



The TurkeyAdapter
public class TurkeyAdapter implements Duck {

private Turkey turkey;

public TurkeyAdapter(Turkey turkey) {

this.turkey = turkey;

}

public void quack() {

turkey.gobble ();

}

public void fly() {

for(int i = 0; i < 5; i++) {

turkey.fly ();

}

}

}

Implement the target interface

reference to object we’re adapting

Gobble is like a quack, right?

Turkey’s fly is different than duck’s



The TurkeyAdapter
public class TurkeyAdapter implements Duck {

private Turkey turkey;

public TurkeyAdapter(Turkey turkey) {

this.turkey = turkey;

}

public void quack() {

turkey.gobble ();

}

public void fly() {

for(int i = 0; i < 5; i++) {

turkey.fly ();

}

}

}

Implement the target interface

reference to object we’re adapting

Gobble is like a quack, right?

Turkey’s fly is different than duck’s



The TurkeyAdapter
public class TurkeyAdapter implements Duck {

private Turkey turkey;

public TurkeyAdapter(Turkey turkey) {

this.turkey = turkey;

}

public void quack() {

turkey.gobble ();

}

public void fly() {

for(int i = 0; i < 5; i++) {

turkey.fly ();

}

}

}

Implement the target interface

reference to object we’re adapting

Gobble is like a quack, right?

Turkey’s fly is different than duck’s



The Adapter Pieces



Questions
How much adapting can be done in an adapter?

• That really depends on the particular situation
and the particular interfaces. It could be just
basic translation or massive amounts of work

Does an adapter always wrap only one class?

• The real world can be messier; an adapter
could wrap two or more adaptees needed to
implement the target interface

• However, the Adapter always converts one
interface to another (the point is just that the
definition of “interface” may not be limited to
a single class)



Questions
How much adapting can be done in an adapter?

• That really depends on the particular situation
and the particular interfaces. It could be just
basic translation or massive amounts of work

Does an adapter always wrap only one class?

• The real world can be messier; an adapter
could wrap two or more adaptees needed to
implement the target interface

• However, the Adapter always converts one
interface to another (the point is just that the
definition of “interface” may not be limited to
a single class)



Questions
How much adapting can be done in an adapter?

• That really depends on the particular situation
and the particular interfaces. It could be just
basic translation or massive amounts of work

Does an adapter always wrap only one class?

• The real world can be messier; an adapter
could wrap two or more adaptees needed to
implement the target interface

• However, the Adapter always converts one
interface to another (the point is just that the
definition of “interface” may not be limited to
a single class)



Questions
How much adapting can be done in an adapter?

• That really depends on the particular situation
and the particular interfaces. It could be just
basic translation or massive amounts of work

Does an adapter always wrap only one class?

• The real world can be messier; an adapter
could wrap two or more adaptees needed to
implement the target interface

• However, the Adapter always converts one
interface to another (the point is just that the
definition of “interface” may not be limited to
a single class)



The Adapter Pattern
The Adapter Pattern converts the interface of a
class into another interface the client expects.
Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces.



The Adapter Class Diagram

Client
Target
interface

request()

Adapter

request()

Adaptee

specificRequest()



Adapter Pattern and Good OO Design

• Favor composition
The adaptee is wrapped with an altered
interface using composition

• Programming to an interface not an
implementation
The client is only aware of the target interface



An Example Adapter in the Wild

• Old World Enumerations. . .
Early Java “collections” types implemented an
elements() method that you could then step
through without knowing how the collection
was implemented

• New World Iterators. . .
The Collections classes use an Iterator that
implements a similar capability but also allows
item removal

• Never the twain shall meet
Oh, wait. . .



Backwards Compatibility

• You know what that means, right?

• We often have to work with legacy code that
does it the old way.

• But our clients insist (and they should) on
using the new way.



Let’s Examine the Interfaces

Iterator interface

hasNext()
next()

remove()

Enumeration interface

hasMoreElements()
nextElement()



The Class Diagram

Iterator interface

hasNext()
next()

remove()

EnumerationIterator

hasNext()
next()

remove()

Enumeration interface

hasMoreElements()
nextElement()



How to Handle the remove() method

• Enumeration simply doesn’t support remove;
it’s “read only”

• We can, however, throw a runtime exception if
someone tries to call remove() on an
EnumerationIterator

The Iterator class supports this; it’s remove
method supports throwing an
UnsupportedOperationException

• In the end, the adapter isn’t perfect; clients will
still have to deal with potential exceptions



The EnumerationIterator Adapter
public class EnumerationIterator implements Iterator {

private Enumeration en;

public EnumerationIterator(Enumeration en) {

this.en = en;

}

public boolean hasNext () {

return en.hasMoreElements ();

}

public Object next() {

return en.nextElement ();

}

public void remove () {

throw new UnsupportedOperationException ();

}

}



A Home Theater



Watching a Movie
Sit back, relax, and. . .

1. Turn on the popcorn popper
2. Start the popper popping
3. Dim the lights
4. Put the screen down
5. Turn the projector on
6. Set the projector input to DVD
7. Put the projector in wide-screen mode
8. Turn the sound amplifier on
9. Set the amplifier to DVD input
10. Set the amplifier to surround sound
11. Set the amplifier volume to medium (5)
12. Turn the DVD player on
13. Start the DVD player playing



Watching a Movie
Sit back, relax, and. . .
1. Turn on the popcorn popper
2. Start the popper popping
3. Dim the lights
4. Put the screen down
5. Turn the projector on
6. Set the projector input to DVD
7. Put the projector in wide-screen mode
8. Turn the sound amplifier on
9. Set the amplifier to DVD input
10. Set the amplifier to surround sound
11. Set the amplifier volume to medium (5)
12. Turn the DVD player on
13. Start the DVD player playing



Further Complications. . .

• When the movie finishes, you have to do it all
in reverse!

• Doing a slightly different task (e.g., listen to
streaming audio) is equally complex

• When you upgrade your system, you have to
learn a slightly different procedure



Home Theater Facade

• Time to create a Facade for the home theater
system.

• We create a new class HomeTheaterFacade,
which exposes a few simple methods such as
watchMovie()

• The Facade class treats the home theater
components as a subsystem, and calls on the
subsystem to implement its watchMovie()
method



Home Theater Facade

HomeTheaterFacade

watchMovie()
endMovie()
listenToCd()
endCd()

listenToRadio()
endRadio()

Amplifier

Tuner DvdPlayer

Screen CdPlayer

ProjectorLights



Sidebar: Facade vs Adapter

• A facade not only simplifies an interface, but it
also decouples a client from a subsystem of
components

• Facades and adapters may wrap multiple
classes

• A facade’s intent is to simplify
• An adapter’s intent is to convert the interface into

something different

• A facade does not encapsulate; it just provides
a simplified interface



The Home Theater Facade
public class HomeTheaterFacade {

private Amplifier amp;

private Tuner tuner;

private DvdPlayer dvd;

private CdPlayer cd;

private Projector projector;

private TheaterLights lights;

private Screen screen;

private PopcornPopper popper;

public HomeTheaterFacade(Amplifier amp , Tuner tuner ,

DvdPlayer dvd , CdPlayer cd,

Projector projector ,

TheaterLights lights , Screen screen ,

PopcornPopper popper) {

amp = amp;

tuner = tuner;

dvd = dvd;

cd = cd;

projector = projector;

lights = lights;

screen = screen;

popper = popper;

}



The Home Theater Facade

public void watchMovie(String movie) {

System.out.println("Get ready to watch a movie");

popper.on();

popper.pop ();

lights.dim (10);

screen.down ();

projector.on();

projector.wideScreenMode ();

amp.on();

amp.setDvd(dvd);

amp.setSurroundSound ();

amp.setVolume (5);

dvd.on();

dvd.play(movie);

}



The Home Theater Facade

public void endMovie () {

System.out.println("Shutting movie theater down");

popper.off ();

lights.on();

screen.up();

projector.off();

amp.off();

dvd.stop ();

dvd.eject ();

dvd.off();

}



The Facade Pattern
The Facade Pattern provides a unified interface to a
set of interfaces in a subsystem. Facade defines a
higher-level interface that makes the subsystem
easier to use.



A Sidebar: The Principle of Least
Knowledge

As a general design principle, you should reduce the
interactions between objects to just a few “close
friends”

• Be careful of the number of classes an object
interacts with and also how it comes to
interact with those classes

• Prevents creating designs that have a very high
degree of coupling among classes (these
systems are much more fragile)



A Sidebar: The Principle of Least
Knowledge

General guidelines:
• Only invoke methods that belong to

• The object itself
• Objects passed as parameters to the method
• Any object the method creates or instantiates
• Any components of the object

• Do not invoke methods on objects that were
returned from calling other methods!



An Example
Without the Principle
public float getTemp () {

Thermometer t = station.getThermometer ();

return t.getTemperature ();

}

We get the thermometer object from the station
and call the method ourselves.
With the Principle
public float getTemp () {

return station.getTemperature ();

}

We add a method to the Station class that makes a
request to the thermometer for us, reducing the
number of classes we’re dependent on.



Principle of Least Knowledge
Advantages

• Reduces dependencies between objects, which
has been demonstrated to reduce maintenance
costs

Disadvantages

• Results in more “wrapper” classes to avoid
method calls to other components

• This can result in increased complexity and
development time



Examples of Good Practice
public class Car {

private Engine engine;

public Car() {

// initialize engine , etc.

}

public void start(Key key) {

Doors doors = new Doors ();

boolean authorized = key.turns ();

if(authorized) {

engine.start ();

updateDashboardDisplay ();

doors.lock ();

}

}

public void updateDashboardDisplay () {

// update display

}

}



Exercise
Does this violate the Principle of Least Knowledge?

public House {

private WeatherStation station;

// other methods and constructor

public float getTemp () {

return station.getThermometer (). getTemperature ();

}

}



Exercise
Does this violate the Principle of Least Knowledge?

public House {

private WeatherStation station;

// other methods and constructor

public float getTemp () {

Thermometer therm = station.getThermometer ();

return getTempHelper(therm);

}

public float getTempHelper(Thermometer therm) {

return therm.getTemperature ();

}

}



Facade and the Principle of Least
Knowledge

• The client only has one friend, the
HomeTheaterFacade.

• The HomeTheaterFacade manages all the
subsystem components for the client, keeping
the client simple and flexible.

• We can upgrade the home theater components
without affecting the client

• Try to keep subsystems adhering to the
Principle of Least Knowledge as well.
If it gets too complex, we can add more
facades to form layers of subsystems.


