CS 351
Design of Large Programs
Concurrency

Brooke Chenoweth

University of New Mexico

Spring 2024

Sequential Process Characterization

Program code (fixed)

Control state
(program counter)
Memory state

® stack

® heap
Formal properties

e safety (does
nothing wrong)

® liveness (makes
progress)

Program

code
Counter

heap

v

executing process

Physical Parallelism

Parallel execution of multiple independent processes
takes place on separate physical hardware resources

multiple cores

® specialized hardware interfaces

® parallel computers

® etc.
Core 1 >
Core2 — —> >
Core 3 —_— >

Core 4

Logical Parallelism

® |nterleaved execution of multiple independent
processes takes place on a shared physical
hardware resource (single CPU)

® | ogical and physical parallelism coexist on
modern computers
® Same two programs
® may share a core at some point (interleaved
execution)
® may execute on separate cores at other times
(parallel execution)

Process Scheduling

® |t is the responsibility of the operating system
to schedule the execution of the processes
sharing one computing platform

® The scheduling policy significantly impacts the
execution times of the individual processes

® Any attempt to perform a performance analysis
needs to take the scheduling policy into
account

Sample Scheduling Policies

e Fixed window
® within a fixed-size window, each process has an
assigned execution slot
e Round robin
® each process gets a turn with no process being
allowed to run forever
® Priority based

® the process with the highest priority is scheduled
first and runs to completion
® the schedule may be preemptive or not

Concurrency

Concurrency is an abstract unifying framework
that enables one to reason about logical and
physical parallelism
It abstracts out

® physical resources

® timing considerations
It achieves this by reducing all forms of
parallelism to nondeterministic execution of
concurrent processes

It allows one to reason about the execution of
concurrent processes while ignoring many of
the complexities of the execution environment

Why Abstraction is Important

e Concurrent execution of multiple processes is
an essential feature of modern computing

® Programming language development did not
pay sufficient attention to concurrency, making
programming more complex than it ought to be
e Some languages (including Java) include

explicit constructs that address concurrent
programming

Why Abstraction is Important

Concurrency introduces significant levels of
complexity

® programs are rarely independent of each other

® programs need to coordinate with each other
and compete for resources
® programs may need to coordinate even when

® developed independently
® residing on processors across the world

Fundamental Concepts

Atomicity
® An operation is atomic if it appears to be

instantaneous and uninterruptable

® Programming languages provide only minimal
atomicity guarantees
® read a simple variable
® write a simple variable

® This greatly complicates the programming task

Fundamental Concepts

Fairness

e Nondeterminism abstracts out the details of
the scheduling policy
e Minimal guarantees are still needed in order to
reason about process execution
® weak fairness is a useful abstract concept, every
program is eventually scheduled to execute

® the operating system scheduling policy needs to be
assessed when making such an assumption

Anomalies

Atomicity
® |et x=3 and y=5
e Consider the statement x := x + vy
e What is the final value of x?

Anomalies

Fairness

® Assume a priority-based non-preemptive
schedule

Process P has the high priority 1
Process Q has the low priority 2
P is idle

® Q is busy (running)

When will P run again?

Practical Concerns

In the absence of atomicity programming itself
becomes impossible!

e Account balance $245
e Teller 1: deposit $100

® read account balance
® add $100
® update balance

e Teller 2: deposit $300

® read account balance
e add $300
® update balance

® Account balance

Practical Concerns

In the absence of atomicity programming itself
becomes impossible!

e Account balance $245

e Teller 1: deposit $100
® read account balance ($245)
e add $100
® update balance

e Teller 2: deposit $300

® read account balance
e add $300
® update balance

® Account balance

Practical Concerns

In the absence of atomicity programming itself
becomes impossible!

e Account balance $245

e Teller 1: deposit $100
® read account balance ($245)
® add $100 ($345)
® update balance

e Teller 2: deposit $300

® read account balance
e add $300
® update balance

® Account balance

Practical Concerns

In the absence of atomicity programming itself
becomes impossible!

e Account balance $245

e Teller 1: deposit $100
® read account balance ($245)
® add $100 ($345)
® update balance

e Teller 2: deposit $300

® read account balance ($245)
* add $300
® update balance

® Account balance

Practical Concerns

In the absence of atomicity programming itself
becomes impossible!

e Account balance $245

e Teller 1: deposit $100
® read account balance ($245)
® add $100 ($345)
® update balance

e Teller 2: deposit $300

® read account balance ($245)
® add $300 ($545)
® update balance

® Account balance

Practical Concerns

In the absence of atomicity programming itself
becomes impossible!

e Account balance $245
e Teller 1: deposit $100

® read account balance ($245)
® add $100 ($345)
® update balance

e Teller 2: deposit $300
® read account balance ($245)
o add $300 ($545)
® update balance ($545)

® Account balance

Practical Concerns

In the absence of atomicity programming itself
becomes impossible!

e Account balance $245
e Teller 1: deposit $100

® read account balance ($245)
® add $100 ($345)
® update balance ($345)

e Teller 2: deposit $300

® read account balance ($245)
o add $300 ($545)
® update balance ($545)

e Account balance $345 (WRONG!)

A Programming Language Solution

Critical Region
® a block of code that is executed atomically
® a way to ensure mutual exclusion

A Programming Language Solution

This time, each deposit is a critical region.

e Account balance $245
e Teller 1: deposit $100

® read account balance
® add $100
® update balance

e Teller 2: deposit $300
® read account balance
® add $300
® update balance

e Account balance

A Programming Language Solution

This time, each deposit is a critical region.

e Account balance $245
e Teller 1: deposit $100

® read account balance ($245) (1)
o add $100 ($345)
® update balance ($345)

e Teller 2: deposit $300
® read account balance

e add $300
® update balance

e Account balance

A Programming Language Solution

This time, each deposit is a critical region.

e Account balance $245

e Teller 1: deposit $100
® read account balance ($245) (1)
o add $100 ($345)
® update balance ($345)

e Teller 2: deposit $300
® read account balance ($345) (2)
e add $300 ($645)
® update balance ($645)

® Account balance $645 (CORRECT!)

Basics of Mutual Exclusion

Test and set
Locks
Semaphores

Mutual exclusion constructs (programming
language specific)

Test and Set

Simple boolean flags cannot ensure mutual
exclusion
® let G guard some resource that demands
mutually exclusive access
® let G = true indicating that the resource is
available
® processes P and Q need the resource

Test and Set

Simple boolean flags cannot ensure mutual
exclusion
® let G guard some resource that demands
mutually exclusive access
® let G = true indicating that the resource is
available
® processes P and Q need the resource
® P reads G to be true

Test and Set

Simple boolean flags cannot ensure mutual
exclusion

® let G guard some resource that demands
mutually exclusive access
let G = true indicating that the resource is
available
processes P and Q need the resource
P reads G to be true
Q reads G to be true

Test and Set

Simple boolean flags cannot ensure mutual
exclusion

® let G guard some resource that demands
mutually exclusive access
let G = true indicating that the resource is
available
® processes P and Q need the resource
® P reads G to be true
e (QQ reads G to be true
[
[

P sets G to false
P starts using the resource

Test and Set

Simple boolean flags cannot ensure mutual
exclusion

® let G guard some resource that demands
mutually exclusive access
let G = true indicating that the resource is
available
® processes P and Q need the resource
® P reads G to be true
e (QQ reads G to be true
e P sets G to false
[J
[J
[J

P starts using the resource
Q sets G to false
Q starts using the resource

Test and Set

e Hardware support is needed

® A process must test and set the flag in a single
atomic step

while (true) do
if G then G := false Must be atomic
use resource
G := true
break
fi
od

® The busy-wait is a real problem!

Locks

® Test and set enables the introduction of locks

e Associate a lock with each resource

e Bracket the use of the resource with the
operations
* lock(G)
® returns only when the lock is set
® the process is suspended avoiding busy-wait

® unlock(G)

Locks

® A process may secure multiple resources as
needed
lock(filel)
lock(file2)
transfer data from filel to file2
unlock(file2)
unlock(filel)
® Possible anomalies:

® accessing the resource without locking
¢ failing to issue the unlock
® deadlock

Deadlock Avoidance

® Deadlock occurs when two processes are
waiting on each other to release some resource

® One way of avoiding deadlock is for all the
processes to lock resources in the same order

Semaphores

A semaphore is a construct designed to allow at
most k processes get access to a given resource
When k is 1, the semaphore becomes a basic

lock (a binary semaphore)
Traditionally the two operations over a
semaphore are
® P(s) - tests for zero and decrements s by one, if
greater than zero
® \/(s) — increments s by one indicating the release of
the resource
All processes must follow the same protocol
P(s) — guards entry to the resource use of
resource

V(s) — frees the resource

