
CS 351
Design of Large Programs

Concurrency

Brooke Chenoweth

University of New Mexico

Spring 2024

Sequential Process Characterization

• Program code (fixed)

• Control state
(program counter)

• Memory state
• stack
• heap

• Formal properties
• safety (does

nothing wrong)
• liveness (makes

progress)

heap

stack

code
Program

Counter

executing process

Physical Parallelism
Parallel execution of multiple independent processes
takes place on separate physical hardware resources

• multiple cores

• specialized hardware interfaces

• parallel computers

• etc.

Core 1

Core 2

Core 3

Core 4

Logical Parallelism

• Interleaved execution of multiple independent
processes takes place on a shared physical
hardware resource (single CPU)

• Logical and physical parallelism coexist on
modern computers

• Same two programs
• may share a core at some point (interleaved

execution)
• may execute on separate cores at other times

(parallel execution)

Process Scheduling

• It is the responsibility of the operating system
to schedule the execution of the processes
sharing one computing platform

• The scheduling policy significantly impacts the
execution times of the individual processes

• Any attempt to perform a performance analysis
needs to take the scheduling policy into
account

Sample Scheduling Policies
• Fixed window

• within a fixed-size window, each process has an
assigned execution slot

• Round robin
• each process gets a turn with no process being

allowed to run forever

• Priority based
• the process with the highest priority is scheduled

first and runs to completion
• the schedule may be preemptive or not

Concurrency

• Concurrency is an abstract unifying framework
that enables one to reason about logical and
physical parallelism

• It abstracts out
• physical resources
• timing considerations

• It achieves this by reducing all forms of
parallelism to nondeterministic execution of
concurrent processes

• It allows one to reason about the execution of
concurrent processes while ignoring many of
the complexities of the execution environment

Why Abstraction is Important

• Concurrent execution of multiple processes is
an essential feature of modern computing

• Programming language development did not
pay sufficient attention to concurrency, making
programming more complex than it ought to be

• Some languages (including Java) include
explicit constructs that address concurrent
programming

Why Abstraction is Important
Concurrency introduces significant levels of
complexity

• programs are rarely independent of each other

• programs need to coordinate with each other
and compete for resources

• programs may need to coordinate even when
• developed independently
• residing on processors across the world

Fundamental Concepts
Atomicity

• An operation is atomic if it appears to be
instantaneous and uninterruptable

• Programming languages provide only minimal
atomicity guarantees

• read a simple variable
• write a simple variable

• This greatly complicates the programming task

Fundamental Concepts
Fairness

• Nondeterminism abstracts out the details of
the scheduling policy

• Minimal guarantees are still needed in order to
reason about process execution

• weak fairness is a useful abstract concept, every
program is eventually scheduled to execute

• the operating system scheduling policy needs to be
assessed when making such an assumption

Anomalies
Atomicity

• Let x=3 and y=5

• Consider the statement x := x + y

• What is the final value of x?

Anomalies
Fairness

• Assume a priority-based non-preemptive
schedule

• Process P has the high priority 1

• Process Q has the low priority 2

• P is idle

• Q is busy (running)

• When will P run again?

Practical Concerns
In the absence of atomicity programming itself
becomes impossible!

• Account balance $245
• Teller 1: deposit $100

• read account balance
• add $100
• update balance

• Teller 2: deposit $300
• read account balance
• add $300
• update balance

• Account balance

Practical Concerns
In the absence of atomicity programming itself
becomes impossible!

• Account balance $245
• Teller 1: deposit $100

• read account balance ($245) (1)
• add $100
• update balance

• Teller 2: deposit $300
• read account balance
• add $300
• update balance

• Account balance

Practical Concerns
In the absence of atomicity programming itself
becomes impossible!

• Account balance $245
• Teller 1: deposit $100

• read account balance ($245) (1)
• add $100 ($345) (2)
• update balance

• Teller 2: deposit $300
• read account balance
• add $300
• update balance

• Account balance

Practical Concerns
In the absence of atomicity programming itself
becomes impossible!

• Account balance $245
• Teller 1: deposit $100

• read account balance ($245) (1)
• add $100 ($345) (2)
• update balance

• Teller 2: deposit $300
• read account balance ($245) (3)
• add $300
• update balance

• Account balance

Practical Concerns
In the absence of atomicity programming itself
becomes impossible!

• Account balance $245
• Teller 1: deposit $100

• read account balance ($245) (1)
• add $100 ($345) (2)
• update balance

• Teller 2: deposit $300
• read account balance ($245) (3)
• add $300 ($545) (4)
• update balance

• Account balance

Practical Concerns
In the absence of atomicity programming itself
becomes impossible!

• Account balance $245
• Teller 1: deposit $100

• read account balance ($245) (1)
• add $100 ($345) (2)
• update balance

• Teller 2: deposit $300
• read account balance ($245) (3)
• add $300 ($545) (4)
• update balance ($545) (5)

• Account balance

Practical Concerns
In the absence of atomicity programming itself
becomes impossible!

• Account balance $245
• Teller 1: deposit $100

• read account balance ($245) (1)
• add $100 ($345) (2)
• update balance ($345) (6)

• Teller 2: deposit $300
• read account balance ($245) (3)
• add $300 ($545) (4)
• update balance ($545) (5)

• Account balance $345 (WRONG!)

A Programming Language Solution
Critical Region

• a block of code that is executed atomically

• a way to ensure mutual exclusion

A Programming Language Solution
This time, each deposit is a critical region.

• Account balance $245
• Teller 1: deposit $100

• read account balance
• add $100
• update balance

• Teller 2: deposit $300
• read account balance
• add $300
• update balance

• Account balance

A Programming Language Solution
This time, each deposit is a critical region.

• Account balance $245
• Teller 1: deposit $100

• read account balance ($245) (1)
• add $100 ($345)
• update balance ($345)

• Teller 2: deposit $300
• read account balance
• add $300
• update balance

• Account balance

A Programming Language Solution
This time, each deposit is a critical region.

• Account balance $245
• Teller 1: deposit $100

• read account balance ($245) (1)
• add $100 ($345)
• update balance ($345)

• Teller 2: deposit $300
• read account balance ($345) (2)
• add $300 ($645)
• update balance ($645)

• Account balance $645 (CORRECT!)

Basics of Mutual Exclusion

• Test and set

• Locks

• Semaphores

• Mutual exclusion constructs (programming
language specific)

Test and Set
Simple boolean flags cannot ensure mutual
exclusion
• let G guard some resource that demands
mutually exclusive access

• let G = true indicating that the resource is
available

• processes P and Q need the resource

• P reads G to be true
• Q reads G to be true
• P sets G to false
• P starts using the resource
• Q sets G to false
• Q starts using the resource

Test and Set
Simple boolean flags cannot ensure mutual
exclusion
• let G guard some resource that demands
mutually exclusive access

• let G = true indicating that the resource is
available

• processes P and Q need the resource
• P reads G to be true

• Q reads G to be true
• P sets G to false
• P starts using the resource
• Q sets G to false
• Q starts using the resource

Test and Set
Simple boolean flags cannot ensure mutual
exclusion
• let G guard some resource that demands
mutually exclusive access

• let G = true indicating that the resource is
available

• processes P and Q need the resource
• P reads G to be true
• Q reads G to be true

• P sets G to false
• P starts using the resource
• Q sets G to false
• Q starts using the resource

Test and Set
Simple boolean flags cannot ensure mutual
exclusion
• let G guard some resource that demands
mutually exclusive access

• let G = true indicating that the resource is
available

• processes P and Q need the resource
• P reads G to be true
• Q reads G to be true
• P sets G to false
• P starts using the resource

• Q sets G to false
• Q starts using the resource

Test and Set
Simple boolean flags cannot ensure mutual
exclusion
• let G guard some resource that demands
mutually exclusive access

• let G = true indicating that the resource is
available

• processes P and Q need the resource
• P reads G to be true
• Q reads G to be true
• P sets G to false
• P starts using the resource
• Q sets G to false
• Q starts using the resource

Test and Set

• Hardware support is needed

• A process must test and set the flag in a single
atomic step

while (true) do

if G then G := false Must be atomic
use resource

G := true

break

fi

od

• The busy-wait is a real problem!

Locks

• Test and set enables the introduction of locks

• Associate a lock with each resource
• Bracket the use of the resource with the
operations

• lock(G)
• returns only when the lock is set
• the process is suspended avoiding busy-wait

• unlock(G)

Locks

• A process may secure multiple resources as
needed
lock(file1)
lock(file2)
transfer data from file1 to file2

unlock(file2)
unlock(file1)

• Possible anomalies:
• accessing the resource without locking
• failing to issue the unlock
• deadlock

Deadlock Avoidance

• Deadlock occurs when two processes are
waiting on each other to release some resource

• One way of avoiding deadlock is for all the
processes to lock resources in the same order

Semaphores
• A semaphore is a construct designed to allow at
most k processes get access to a given resource

• When k is 1, the semaphore becomes a basic
lock (a binary semaphore)

• Traditionally the two operations over a
semaphore are

• P(s) – tests for zero and decrements s by one, if
greater than zero

• V(s) – increments s by one indicating the release of
the resource

• All processes must follow the same protocol
P(s) — guards entry to the resource use of
resource
V(s) — frees the resource

