CS 351

Design of Large Programs
Threads and Concurrency

Brooke Chenoweth

University of New Mexico

Spring 2024



Concurrency in Java

® Java has basic concurrency support built into
the language.

® Also has high-level APls available in
java.util.concurrent package



Processes vs Threads

® Processes

Self-contained execution environment

Each process has own memory space
Communicate with other processes through
interprocess communication (pipes, sockets, files,
etc.)

® Threads

Creating new thread requires fewer resources than
an new process.

Threads within same process share process’s
resources.

Threads have shared heap, but separate stacks.



Thread objects

Each thread is associated with an instance of
Thread
Two ways to create a new thread:

® Subclass Thread

® |mplement Runnable interface and pass Runnable

object to Thread constructor.

In both cases, you'll implement run method to
contain the code to be executed on the thread.

Implementing Runnabie is the more flexible
approach.



Thread.sleep method

® The sleep method causes the current thread to
suspend execution for a specified number of
milliseconds.

e Sleep time is not guaranteed to be precise.
(Limits of OS)

® Sleep period may be terminated by an
interrupt.



Thread methods

If | have initialized a Thread named nyThread
® pyThread.start() — starts running myThread

® nyThread.join() — Pauses current thread until
myThread terminates



Synchronized Methods

public class SynchronizedCounter {
private int c = O0;
public synchronized void increment () { c++; }
public synchronized int value() { return c; }

® |t is not possible for two invocations of
synchronized methods on the same object to
interleave.

® When one thread is executing a synchronized
method for an object, all other threads that
invoke synchronized methods for the same
object block until the first thread is done with
the object.



Synchronized Blocks

public void copyP(Point destination){
synchronized (p) {
destination.x = p.X;
destination.y = p.y;
}
}

public void addP () (int n) {
synchronized (p) {
p.X += n;
p.y *= n;
}
}

Both synchronized blocks obtain lock on member
variable p



Synchronized Methods vs Blocks

e Making a method synchronized is equivalent to
wrapping method body in a synchronized(this)
block.

® Synchronized blocks are more complicated, but
offer finer grained synchronization than
synchronized methods.



Liveness Problems

® Deadlock — Threads are blocked forever waiting
for each other.

e Starvation — Thread cannot gain access to
shared resources held by other “greedy”
threads.

e Livelock — Threads too busy responding to
each other to actually make progress.



FibThreads: Worker (1/1)

public static class Worker extends Thread {
private final String name;
private long step = 0;

private int x = 0;

private int y = 1;

private int z;

private boolean keepGoing = true;

public Worker (String name) {
this.name = name;
z = x+y;

}

private synchronized void update() {
step++;
if (z < 0) {
// restart after overflow
x = 0;
y = 1;
} else {
x =y;
y = z;

Z=x+y;



FibThreads: Worker (2/2)

public void quit () {
keepGoing = false;
}

@0verride
public void run() {
while (keepGoing) {
update () ;
}
System.out.println(name +
" stopping at step " + step);

}

@0verride

public synchronized String toString() {
return name + " step " + step +

",X=”+X+",y="+y+",Z=

n

+ Z;



FibThreads: main

public static void main(String[] args) throws InterruptedException {
Worker [] workers = new Worker []{ new Worker("A"), new Worker ("B") };
for (Worker worker : workers) { worker.start(); }
for(int i = 0; i < 10; ++i) {
System.out.println("i = " + i);
for (Worker worker : workers) {

System.out.println(worker);

}
Thread.sleep (1000); // Take a short nap

for (Worker worker : workers) { worker.quit(); }
for (Worker worker : workers) {
// watt until this thread has finished.
worker.join();

}

System.out.println("All workers are done. Goodbye.");



FibThreads: Why synchronized?

® update and toString methods are synchronized
e What might happen if we didn't?



Producer/Consumer Pattern

Producers and consumers run concurrently.

Producer produces values and places them in a
shared queue.

Consumer removes values from queue and
processes them.

May be multiple producers, consumers, queues.



Producer/Consumer with BlockingQueue

® Could implement with any queue type and
careful use of synchronized blocks, but there is
an easier way.

® The java.util.concurrent.BlockingQueue iNterface
extends java.util.Queue With methods that make
current thread wait if necessary.
® put — add item to queue (wait if no room)
® take — remove next item from queue (wait if

empty)



ProducerConsumer: Producer

public static class Producer implements Runnable {
private final String name;
private final BlockingQueue<Integer> queue;

public Producer (String name, BlockingQueue<Integer> queue) {

this.name = name;
this.queue = queue;
}
@0verride
public void run() {
System.out.println("Start " + name);
try {
for(int i = 0; i < 20; i++) {
System.out.println(name + " produces " + 1i);
queue.put (i);
}
System.out.println(name + " is done producing");
} catch (InterruptedException e) {
System.out.println(name + " was interrupted");
}
}



ProducerConsumer: Consumer

public static class Consumer implements Runnable {
private final String name;
private final BlockingQueue<Integer> queue;

public Consumer (String name, BlockingQueue<Integer> queue) {

this.name = name;
this.queue = queue;
}
@0verride
public void run() {
System.out.println("Start " + name);
try {
while (true) {
int value = queue.take();
System.out.println(name + " consumes " + value);
}
} catch (InterruptedException e) {
System.out.print(name + " was interrupted");
}
}



ProducerConsumer: main

public static void main(Stringl[] args)
throws InterruptedException {

BlockingQueue<Integer> sharedQueue =
new LinkedBlockingQueue<>();

Thread prodThread =

new Thread(new Producer ("P", sharedQueue));
Thread consThread =
new Thread(new Consumer ("C", sharedQueue));

prodThread.start () ;
consThread.start ();



