CS 351

Design of Large Programs
Concurrent Design Notation

Brooke Chenoweth

University of New Mexico

Spring 2024

Basic Component Notation Revisited

® Passive
® procedure
® object

e Active
® task

® active object
e Organizational

® package
e External

® devices and
interfaces

Procedure Object
not used
(so far
r Task | rActive Object
(used only
for main
Package

Extending the Task Notation

A task is a sequential process having its own
independent thread of control

Tasks may be static (created at initialization)
or dynamic (having a life cycle)
Task execution results in the invocation of
methods on objects in the system
Task execution may be

® periodic

® scheduled at a given priority (lower number

represents a higher priority)
® reactive (in response to some actuator)

Extending the Task Notation

r 27 ™
task task priority

trigger

task creation

Task Activation

Each actuator is associated with some trigger
condition

Trigger conditions must be defined outside the
diagram

Different notations should be used for different
triggers

Implementability of the trigger mechanism
must be established

Actuators can hide complex implementation
details and simplify design understanding

Sample trigger conditions

clock signal

timer overflow

system event (e.g., failure, power up)
application event

message arrival

independently assessed system condition

Synchronization in Java

Synchronization defines a structured
mechanism for coordination among tasks

Mutual exclusion is a general synchronization
mechanism implementable in most systems

The actual mechanics of synchronization are
language specific
At design level it is convenient to express

synchronization by specifying mutual exclusion
requirements

Synchronization in Java

ignored the lock

and is active

Y

pass.ed the. lock Object
and is active X

Y

blocked and

is waiting in |ock
the queue associated
with X

Preview of Java Notification

The wait(object) operation places the
thread on the wait queue

® the object lock is released
A time period may be specified and the thread
is removed from the wait queue when the time
interval expires

The notifyAll(object) operation removes
all the threads from the wait queue

In both cases the released threads must be
scheduled and must acquire the lock

Preview of Java Notification

active

Y

active

Object
blocked and X
in the queue

Y

waiting to try lock

again af’Fer associated
notification with X

A Notation for Synchronized Methods

® The notation is the same for @ object
classes and objects and so are method 1
the semantics method 2

e Notation and semantics may be method 3
adjusted for different settings

® Synchronized objects specify
mutual exclusion among all object
methods _ o @ method 1

® Synchronized methods limit © method 2
mutual exclusion to identified method 3

methods

Active Objects

* Active objects exhibit [object
behaviors equivalent to
wrapping a task inside an = method 1
object veneer © method 2
® the goal is to control the © method 3
execution of a specific method 4
method
® The execution of a object
thread inside an active trigger
object may be ==>method 1
® periodic © method 2
® reactive @ method 3
method 4

trigger/method -
—>| object

Specialized Connectors

e Triggers eliminate the need for many types of
connectors

e Custom connectors can be defined and used in
the design diagrams. .. with the proviso that
the semantics of the connector are well defined

e Example: Software Bus

clients

[[[

services

Software Bus is a Subsystem!

clients

A Simple Banking Example

Consider a bank
e the bank has up to three active tellers

® cach teller needs to sign in and sign out
® once signed in, a teller can access one account
at a time in order to
® deposit funds
® withdraw funds
® check current account balance
® the accounts are stored in a data base
® unique account number
® owner information
® pin number

Banking: Solution 1

® A separate task is associated with each teller
® it encapsulates all interactions with the physical
tellers (not shown)
e A fixed number of Teller tasks are instantiated

at initialization time
® The Teller tasks have direct access to the
Accounts object
® it encapsulates the interactions with the database
(not shown)
® it manages synchronization as needed, on account
by account basis

Eer 2

\

Teller 1 Teller 3

Accounts

Banking: Solution 2

The Teller task does not need to know how
accounts are managed

A teller works with a single account at a time

Between checking the balance and doing a
withdrawal the money may not longer be there
Proposed modifications:

® |ock the account being accessed by the teller and
commit changes at the end

® let Teller task work on a single account at a time
by creating an account proxy

Banking: Solution 2

| Teller 1

| Teller 2

| Teller 3

Y

A

4

Y

Account 1

Acco

unt 2

Account 3

S

L

© Accounts

Banking: Solution 3

® There is no need to run a Teller task when the
teller is on vacation

® We should not have to change the initialization
code every time the number of tellers changes
® Proposed modifications:

add a Teller Manager which sleeps unless a teller
wants to sign in

create a Teller task and a private Account when a
teller signs in

no synchronization is needed for Account but the
account must be locked in the database

Banking: Solution 3

[4
= Teller Manager

Y

Teller
Credentials

>| Teller k

A

y

-->

Acco

unt k

A

4

© Accounts

Banking: Solution 4

e Teller credentials cannot be volatile

® |t may be more efficient to save the locks
outside the database
® the database may be backed up in the background
® Proposed modifications:
® make the database explicit

® store credentials in the database
® let Accounts manage the locks

Banking: Solution 4
>| Teller k

[4
= Teller Manager |----

Y E \
Teller '--»| Account k
Credentials
Y
© Accounts
Y
Y VY A ts
ccoun
Database)
in Use

Asteroid Detection Example

Consider a telescope that scans the sky
® it sends one image at a time for processing

® fixed size
® gray scale
® orientation vector

® the processing steps are as follows

time stamp the image

apply a Gaussian filter to smooth the image
select a threshold value

threshold the image

compute the center and diameter of large blobs
archive the resulting circle and orientation vector

Asteroids: Solution 1

® Associate a procedure with each step along the
image processing sequence

e Control the order in which procedures are
executed

® Pass the returned values to from one procedure
to the next

Asteroids: Solution 1

]
Processing

Logic
Time Stamp| [Smooth | | Threshold Extract
A4 \ \ 4
Source Image Clock Archive

Asteroids: Solution 2
® The design is flexible

® new steps can be added
® the ordering of steps can be changed
e However, Processing Logic
® knows about the data formats being used
® does a lot of data copying
® Proposed modification:
® create a pipeline using a new kind of connector

Asteroids: Solution 2

| Task 1 Task 2

pass X when empty

Pipe Connector
P remove X when full

| Task 1 »| Task 2 |

Source
Image

>

Asteroids: Solution 2

Processing of multiple images can overlap

Time
Stamp

Y

Clock

’ rSmooth | ’ rThreshoId | ’ rExtract |

Y

Archive

