
CS 351
Design of Large Programs
Concurrent Design Notation

Brooke Chenoweth

University of New Mexico

Spring 2024



Basic Component Notation Revisited

• Passive
• procedure
• object

• Active
• task
• active object

• Organizational
• package

• External
• devices and

interfaces

Procedure Object

Task Active Object

Package

used only
for main

not used
so far



Extending the Task Notation

• A task is a sequential process having its own
independent thread of control

• Tasks may be static (created at initialization)
or dynamic (having a life cycle)

• Task execution results in the invocation of
methods on objects in the system

• Task execution may be
• periodic
• scheduled at a given priority (lower number

represents a higher priority)
• reactive (in response to some actuator)



Extending the Task Notation

task
2

task priority

task
trigger

task creation



Task Activation

• Each actuator is associated with some trigger
condition

• Trigger conditions must be defined outside the
diagram

• Different notations should be used for different
triggers

• Implementability of the trigger mechanism
must be established

• Actuators can hide complex implementation
details and simplify design understanding



Sample trigger conditions

• clock signal

• timer overflow

• system event (e.g., failure, power up)

• application event

• message arrival

• independently assessed system condition



Synchronization in Java

• Synchronization defines a structured
mechanism for coordination among tasks

• Mutual exclusion is a general synchronization
mechanism implementable in most systems

• The actual mechanics of synchronization are
language specific

• At design level it is convenient to express
synchronization by specifying mutual exclusion
requirements



Synchronization in Java

Object
X

lock
associated
with X

ignored the lock
and is active

passed the lock
and is active

blocked and
is waiting in
the queue



Preview of Java Notification
• The wait(object) operation places the
thread on the wait queue

• the object lock is released

• A time period may be specified and the thread
is removed from the wait queue when the time
interval expires

• The notifyAll(object) operation removes
all the threads from the wait queue

• In both cases the released threads must be
scheduled and must acquire the lock



Preview of Java Notification

Object
X

lock
associated
with X

active

active

blocked and
in the queue

waiting to try
again after
notification



A Notation for Synchronized Methods

• The notation is the same for
classes and objects and so are
the semantics

• Notation and semantics may be
adjusted for different settings

• Synchronized objects specify
mutual exclusion among all
methods

• Synchronized methods limit
mutual exclusion to identified
methods

@ object

method 1
method 2
method 3

object

@ method 1
@ method 2
method 3



Active Objects

• Active objects exhibit
behaviors equivalent to
wrapping a task inside an
object veneer

• the goal is to control the
execution of a specific
method

• The execution of a
thread inside an active
object may be

• periodic
• reactive

object

⇒ method 1
@ method 2
@ method 3
method 4

object

method 1
@ method 2
@ method 3
method 4

trigger

object
trigger/method



Specialized Connectors
• Triggers eliminate the need for many types of
connectors

• Custom connectors can be defined and used in
the design diagrams. . .with the proviso that
the semantics of the connector are well defined

• Example: Software Bus
clients

services



Software Bus is a Subsystem!

clients

services

Bus



A Simple Banking Example
Consider a bank

• the bank has up to three active tellers

• each teller needs to sign in and sign out
• once signed in, a teller can access one account
at a time in order to

• deposit funds
• withdraw funds
• check current account balance

• the accounts are stored in a data base
• unique account number
• owner information
• pin number



Banking: Solution 1
• A separate task is associated with each teller

• it encapsulates all interactions with the physical
tellers (not shown)

• A fixed number of Teller tasks are instantiated
at initialization time

• The Teller tasks have direct access to the
Accounts object

• it encapsulates the interactions with the database
(not shown)

• it manages synchronization as needed, on account
by account basis

Teller 1 Teller 2 Teller 3

Accounts



Banking: Solution 2

• The Teller task does not need to know how
accounts are managed

• A teller works with a single account at a time

• Between checking the balance and doing a
withdrawal the money may not longer be there

• Proposed modifications:
• lock the account being accessed by the teller and

commit changes at the end
• let Teller task work on a single account at a time

by creating an account proxy



Banking: Solution 2

Teller 1 Teller 2 Teller 3

Account 1 Account 2 Account 3

@ Accounts



Banking: Solution 3

• There is no need to run a Teller task when the
teller is on vacation

• We should not have to change the initialization
code every time the number of tellers changes

• Proposed modifications:
• add a Teller Manager which sleeps unless a teller

wants to sign in
• create a Teller task and a private Account when a

teller signs in
• no synchronization is needed for Account but the

account must be locked in the database



Banking: Solution 3

Teller Manager

Teller
Credentials

Teller k

Account k

@ Accounts



Banking: Solution 4

• Teller credentials cannot be volatile
• It may be more efficient to save the locks
outside the database

• the database may be backed up in the background

• Proposed modifications:
• make the database explicit
• store credentials in the database
• let Accounts manage the locks



Banking: Solution 4

Teller Manager

Teller
Credentials

Teller k

Account k

@ Accounts

Accounts
in Use

Database



Asteroid Detection Example
Consider a telescope that scans the sky
• it sends one image at a time for processing

• fixed size
• gray scale
• orientation vector

• the processing steps are as follows
• time stamp the image
• apply a Gaussian filter to smooth the image
• select a threshold value
• threshold the image
• compute the center and diameter of large blobs
• archive the resulting circle and orientation vector



Asteroids: Solution 1

• Associate a procedure with each step along the
image processing sequence

• Control the order in which procedures are
executed

• Pass the returned values to from one procedure
to the next



Asteroids: Solution 1

Processing
Logic

Smooth ThresholdTime Stamp Extract

Source Image Clock Archive



Asteroids: Solution 2
• The design is flexible

• new steps can be added
• the ordering of steps can be changed

• However, Processing Logic
• knows about the data formats being used
• does a lot of data copying

• Proposed modification:
• create a pipeline using a new kind of connector



Asteroids: Solution 2

Task 1

Pipe Connector

Task 2

pass X when empty
remove X when full

Task 1 Task 2



Asteroids: Solution 2
Processing of multiple images can overlap

Source
Image

Time
Stamp Smooth Threshold Extract

Clock
Archive


