
CS 351
Design of Large Programs

Java Threads

Brooke Chenoweth

University of New Mexico

Spring 2024



Processes and Threads

Process
• has a private,
self-contained
execution environment

• OS allocated memory
space, processor
resources

Thread
• has a private,
self-contained
execution environment

• a subset of the parent
process’ resources

• constituent of a
process

• every process consists
of at least one thread

• a “lightweight
process”



Threads
A thread is a programming abstraction that allows
concurrency to be implemented

• runs a single, sequential set of operations

• possesses its own call stack

• has access to shared state (among threads)

Every process begins as a single thread of execution
Additional threads are created to handle concurrent
operations



Threads
Threads may:
• perform different tasks in parallel
• perform different instances of the same task in
parallel

Common designs
• Threads are created by the main program to
handle tasks

• thread management is handled directly by the main
application

• Tasks are passed to an executor
• Executor creates threads and assigns them to

received tasks
• thread management is abstracted from the rest of

the application



Case Study: Auto-Save
Consider a word processing application which
retains “undo” capabilities throughout the lifetime
of a document:

• documents grow very large over time

• saving large documents to disk can take several
seconds

The user wants to enable auto-save which will
automatically save changes to the document while
she works.



Auto-Save: Sequential Design
File writes and user interface (UI) rendering occur in
the same thread

• same thread, same sequence of execution

What will this look like?



Sequential Design: Pitfall
Since saves are time-consuming for large files, UI
updates will stop each time the document is
auto-saved.

CPU
UI rendering

auto-save

What this looks like: a “laggy” user interface



Auto-Save: Concurrent Design
Auto-saves should be processed in a separate
(worker) thread.

• In general: long jobs/tasks should occur in
different threads than tasks which demand
responsiveness (i.e. rendering a user interface)

Even with threads at our disposal, in practice we
should utilize an efficient data structure to store the
document

• in this case: a data structure which minimizes
time complexity of document saves

• food for thought: how might this data
structure be designed?



Auto-Save: Concurrent Design Overview

AutoSaveExecutor

FileWorker

File Repository

Editor

Document



Auto-Save: Concurrent Design Overview

• Editor – the UI and main thread
• renders and updates the user interface
• has its own thread

• Document – the shared state we want to save

• AutoSaveExecutor – an executor
• manages the creation of FileWorker threads

assigned to save operations

• FileWorker
• writes the current snapshot of the Document into

the File Repository in a separate thread



Threads: Extending Thread

class FileWorker extends Thread {

@Override

public void run() {

// save the file

}

}

// other methods , etc.

public static void main(String [] args) {

FileWorker worker = new FileWorker ();

worker.start ();

}

We can invoke start only once during the Thread’s
lifecycle. Our code in run will be executed; the
Thread terminates upon return



Threads: Implementing Runnable

class FileWorker implements Runnable {

@Override

public void run() {

// save the file

}

}

// other methods , etc.

public static void main(String [] args) {

FileWorker worker = new FileWorker ();

Thread workerThread = new Thread(worker );

workerThread.start ();

}

Again, start can only be invoked once during the
Thread’s lifecycle. We cannot reuse Thread
instances after they have returned from run.



Which is preferable?
Implementing Runnable is preferable in most cases:

• extending Thread inherits all of the overhead of
the Thread superclass

• a class which implements Runnable can be
further extended, while a class which extends
Thread cannot

• single inheritance, which sacrifices modularity



An Aside: Inter-thread Communication

• Threads in Java can call one another’s methods
(assuming they have references to one another)

• This allows:
• inter-thread communication
• polling: one thread periodically checks the state of

another



Inter-thread Communication: Dominos
public class Domino extends Thread {

private static int count = 0;

private Domino next;

private boolean standing = true;

public Domino(Domino next) {

setName("" + count ++); // get/setName inherited from Thread

this.next = next;

}

@Override

public void run() {

while(standing) {

// remain standing

}

if (next != null) { next.topple (); }

}

public void topple () {

standing = false;

System.out.println(Thread.currentThread (). getName ()

+ " toppled " + getName ());

}

}



Inter-thread Communication: Dominos

public static void main(String [] args) {

Domino d5 = new Domino(null);

Domino d4 = new Domino(d5);

Domino d3 = new Domino(d4);

Domino d2 = new Domino(d3);

Domino d1 = new Domino(d2);

d1.start ();

d2.start ();

d3.start ();

d4.start ();

d5.start ();

d1.topple (); // topple the first domino

}

Does this example always work? If not, why not?



Auto-Save: Implementation Overview
Beginning with basic functionality, we will
incrementally implement auto-save:

1. Class and method stubs

2. Thread.sleep: Implementing a timed auto-save
interval

3. Spawning FileWorker threads to perform the
save operation

4. Thread.join: Pausing execution until save
completion

5. Thread.interrupt: Terminating threads

6. Thread.setPriority: Providing optimizing hints
to the JVM thread scheduler



AutoSaveExecutor

public class AutoSaveExecutor implements Runnable {

private int saveInterval;

private Document document;

public AutoSaveExecutor(int saveInterval ,

Document document) {

this.saveInterval = saveInterval;

this.document = document;

}

@Override

public void run() {

// spawn a new FileWorker every saveInterval ...

}

}



Editor

public class Editor {

private Document curDoc = new Document ();

private Thread autoSaveThread;

public Editor(boolean autoSaveEnabled) {

// Instantiation of Document state ...

if(autoSaveEnabled) {

AutoSaveExecutor autoSaveExec =

new AutoSaveExecutor (60000 , curDoc );

autoSaveThread = new Thread(autoSaveExec );

autoSaveThread.start ();

}

}

// GUI rendering , associated methods ...

}



Document
public class Document {

private Path path;

public Path getPath () {

return path;

}

@Override

public String toString () {

// return a String representing the Document ...

}

}

A lot of design happens here – in this example, it’s
assumed our Document and all of its tracked
changes are encoded as Strings. In practice, this
may not be the case.



FileWorker
public class FileWorker implements Runnable {

private final Document docToSave;

public FileWorker(Document docToSave) {

this.docToSave = docToSave;

}

@Override

public void run() {

try {

BufferedWriter bufferedWriter =

Files.newBufferedWriter(docToSave.getPath ());

bufferedWriter.write(docToSave.toString ());

bufferedWriter.close ();

} catch (IOException e) {

e.printStackTrace ();

}

}

}

We may or may not be
accessing shared state here,
depending on implementation.
How might that be dangerous?



AutoSaveExecutor: Implementing a timed
save interval

• We want the AutoSaveExecutor to create
FileWorker threads on a fixed interval.

• Using the Thread.sleep mechanism, we can put
the executor thread to sleep when it doesn’t
need to be executing (i.e. spawning worker
threads).



AutoSaveExecutor: save interval
public class AutoSaveExecutor implements Runnable {

private int saveInterval;

public AutoSave(int saveInterval) {

this.saveInterval = saveInterval;

}

@Override

public void run() {

while (! Thread.interrupted ()) {

try {

Thread.sleep(saveInterval );

} catch (InterruptedException e) {

e.printStackTrace ();

}

}

}

}

While sleeping, a thread voluntarily

gives up its allocated processor time.



AutoSaveExecutor: Spawning FileWorkers
Now that the AutoSaveExecutor wakes on an interval,
we need it to dispatch FileWorker threads to perform
the actual save operation.

@Override

public void run() {

while (! Thread.interrupted ()) {

try {

Thread.sleep(saveInterval );

FileWorker fileWorker = new FileWorker(document );

Thread fileWorkerThread = new Thread(fileWorker );

fileWorkerThread.start ();

} catch (InterruptedException e) {

e.printStackTrace ();

}

}

}



AutoSaveExecutor: Thread.join

• Consider a scenario in which the time to
complete a file write exceeds the interval at
which FileWorker threads are spawned.

• What happens if we accidentally spawn several
FileWorkers?

• answer: memory inconsistency and errors
associated with several threads attempting to write
to a single file at once

• Note: in many (if not most) cases, executors
are designed to work with many worker threads
running concurrently.

• ex: a server using a thread pool executor and
worker threads to handle concurrent client requests



AutoSaveExecutor: Thread.join

• Consider a scenario in which the time to
complete a file write exceeds the interval at
which FileWorker threads are spawned.

• What happens if we accidentally spawn several
FileWorkers?

• answer: memory inconsistency and errors
associated with several threads attempting to write
to a single file at once

• Note: in many (if not most) cases, executors
are designed to work with many worker threads
running concurrently.

• ex: a server using a thread pool executor and
worker threads to handle concurrent client requests



AutoSaveExecutor: Thread.join
The join operation waits for the active thread on
which it’s called to die before proceeding.

@Override

public void run() {

while (! Thread.interrupted ()) {

try {

Thread.sleep(saveInterval );

FileWorker fileWorker = new FileWorker(document );

Thread fileWorkerThread = new Thread(fileWorker );

fileWorkerThread.start ();

fileWorkerThread.join ();

System.out.println ("Write completed at "

+ System.currentTimeMillis () );

} catch (InterruptedException e) {

e.printStackTrace ();

}

}

}



Editor: Thread.interrupt
If our user wants to quit, we need to halt or
interrupt the AutoSaveExecutor thread and join
after the interrupt is processed

public void disableAutoSave () {

autoSaveThread.interrupt ();

try {

autoSaveThread.join ();

} catch (InterruptedException e) {

e.printStackTrace ();

}

}



Threads: Priority & Scheduling

• The priority of a thread determines the amount
of processing resources it will be allotted by the
Java Virtual Machine (JVM).

• To ensure UI updates are scheduled favorably
(given more resources) and auto-saves are
scheduled less-favorably, we can assign priorities
to respective threads after creating them.

AutoSaveExecutor autoSaveExec =

new AutoSaveExecutor (60000 , curDoc );

autoSaveThread = new Thread(autoSaveExec );

autoSaveThread.setPriority (1);

autoSaveThread.start ();


