
CS 351
Design of Large Programs
Java Synchronization

Brooke Chenoweth

University of New Mexico

Spring 2024



Concurrency Issues

• The performance benefits of concurrency come
with added programming complexity.

• Without the proper use of mutual exclusion
when accessing shared resources, some
concurrency issues can arise:

• Thread interference (race conditions)
• Deadlock
• Livelock
• Starvation



Recall: Mutual Exclusion
Mutual exclusion is the requirement that no more
than one thread of execution may access a
particular critical section at once.

x = 1

Thread A
x = x + 1

Thread B
x = x - 2

What does x equal?

Without mutual exclusion, we don’t know which
thread will access, manipulate, and store the result
first!



Synchronization: Programming Mutual
Exclusion

Synchronization is the programming construct used to
ensure mutual exclusion in Java.
Two synchronization idioms are used:

Synchronized methods

public synchronized void foo() {

// ...

}

Only one thread at a time can
execute in a synchronized method.
The lock is on the object providing
the methods.

Synchronized blocks

public void foo() {

synchronized(lock) {

// ...

}

}

Only the thread
possessing the lock can
execute in a
synchronized block.



Example: Counter
Consider a static Counter which allows two Farmers to
keep track of the number of sheep in the pen.

public class Counter {

private static int n = 0;

public static void increment () {

n++;

}

public static void decrement () {

n--;

}

public static void printCount () {

// print sheep count ...

}

}

public class Farmer

implements Runnable {

@Override

public void run() {

// two sheep arrive

Counter.increment ();

Counter.increment ();

// one sheep leaves

Counter.decrement ();

}

}

How many sheep are in the pen?



Counter: Console Output

public static void main(String [] args) {

Farmer f1 = new Farmer ();

Thread t1 = new Thread(f1);

Farmer f2 = new Farmer ();

Thread t2 = new Thread(f2);

t1.start ();

t2.start ();

Counter.printCount ();

}

Output

2 sheep in the pen.

3 sheep in the pen.

2 sheep in the pen.

1 sheep in the pen.

We have a race condition.
Access to the critical region (where we manipulate
the shared resource n) should be synchronized.



Counter: Console Output

public static void main(String [] args) {

Farmer f1 = new Farmer ();

Thread t1 = new Thread(f1);

Farmer f2 = new Farmer ();

Thread t2 = new Thread(f2);

t1.start ();

t2.start ();

Counter.printCount ();

}

Output
2 sheep in the pen.

3 sheep in the pen.

2 sheep in the pen.

1 sheep in the pen.

We have a race condition.
Access to the critical region (where we manipulate
the shared resource n) should be synchronized.



Counter: Console Output

public static void main(String [] args) {

Farmer f1 = new Farmer ();

Thread t1 = new Thread(f1);

Farmer f2 = new Farmer ();

Thread t2 = new Thread(f2);

t1.start ();

t2.start ();

Counter.printCount ();

}

Output
2 sheep in the pen.

3 sheep in the pen.

2 sheep in the pen.

1 sheep in the pen.

We have a race condition.
Access to the critical region (where we manipulate
the shared resource n) should be synchronized.



Counter: Console Output

public static void main(String [] args) {

Farmer f1 = new Farmer ();

Thread t1 = new Thread(f1);

Farmer f2 = new Farmer ();

Thread t2 = new Thread(f2);

t1.start ();

t2.start ();

Counter.printCount ();

}

Output
2 sheep in the pen.

3 sheep in the pen.

2 sheep in the pen.

1 sheep in the pen.

We have a race condition.
Access to the critical region (where we manipulate
the shared resource n) should be synchronized.



Counter: Console Output

public static void main(String [] args) {

Farmer f1 = new Farmer ();

Thread t1 = new Thread(f1);

Farmer f2 = new Farmer ();

Thread t2 = new Thread(f2);

t1.start ();

t2.start ();

Counter.printCount ();

}

Output
2 sheep in the pen.

3 sheep in the pen.

2 sheep in the pen.

1 sheep in the pen.

We have a race condition.
Access to the critical region (where we manipulate
the shared resource n) should be synchronized.



Counter: Console Output

public static void main(String [] args) {

Farmer f1 = new Farmer ();

Thread t1 = new Thread(f1);

Farmer f2 = new Farmer ();

Thread t2 = new Thread(f2);

t1.start ();

t2.start ();

Counter.printCount ();

}

Output
2 sheep in the pen.

3 sheep in the pen.

2 sheep in the pen.

1 sheep in the pen.

We have a race condition.
Access to the critical region (where we manipulate
the shared resource n) should be synchronized.



Counter: Synchronized Methods
In this trivial example, synchronizing access to both
methods eliminates the race condition.
public class Counter {

private static int n = 0;

public static synchronized void increment () {

n++;

}

public static synchronized void decrement () {

n--;

}

}

Output

2 sheep in the pen.

2 sheep in the pen.

2 sheep in the pen.

2 sheep in the pen.



Counter: Synchronized Methods
In this trivial example, synchronizing access to both
methods eliminates the race condition.
public class Counter {

private static int n = 0;

public static synchronized void increment () {

n++;

}

public static synchronized void decrement () {

n--;

}

}

Output
2 sheep in the pen.

2 sheep in the pen.

2 sheep in the pen.

2 sheep in the pen.



Counter: Synchronized Methods
In this trivial example, synchronizing access to both
methods eliminates the race condition.
public class Counter {

private static int n = 0;

public static synchronized void increment () {

n++;

}

public static synchronized void decrement () {

n--;

}

}

Output
2 sheep in the pen.

2 sheep in the pen.

2 sheep in the pen.

2 sheep in the pen.



Counter: Synchronized Methods
In this trivial example, synchronizing access to both
methods eliminates the race condition.
public class Counter {

private static int n = 0;

public static synchronized void increment () {

n++;

}

public static synchronized void decrement () {

n--;

}

}

Output
2 sheep in the pen.

2 sheep in the pen.

2 sheep in the pen.

2 sheep in the pen.



Counter: Synchronized Methods
In this trivial example, synchronizing access to both
methods eliminates the race condition.
public class Counter {

private static int n = 0;

public static synchronized void increment () {

n++;

}

public static synchronized void decrement () {

n--;

}

}

Output
2 sheep in the pen.

2 sheep in the pen.

2 sheep in the pen.

2 sheep in the pen.



Case Study: Producer/Consumer problem
• Consider a queue which buffers data provided
by a Producer and removed by a Consumer

• the queue has a maximum size
• the Producer should not add to a full queue
• the Consumer should not consume from an empty

queue

• How do we avoid. . .
• putting objects in a full queue?
• attempting to remove them from an empty one?

• We will explore a solution that implements a
singleton queue.

• Educational purposes only!
• BlockingQueue implementations already exist!



Case Study: Producer/Consumer problem
• Consider a queue which buffers data provided
by a Producer and removed by a Consumer

• the queue has a maximum size
• the Producer should not add to a full queue
• the Consumer should not consume from an empty

queue

• How do we avoid. . .
• putting objects in a full queue?
• attempting to remove them from an empty one?

• We will explore a solution that implements a
singleton queue.

• Educational purposes only!
• BlockingQueue implementations already exist!



Producer/Consumer: Design Overview
• Producer (thread)

• integers are placed in the Queue
• waits when the Queue is full

• Queue – a singleton queue
• holds integer values
• starts being empty
• has a maximum size

• Consumer (thread)
• waits for a non-empty Queue
• consumes its contents

Queue

ConsumerProducer



Queue: recall the singleton pattern. . .
• A single instance of Queue is referenced
globally by the Producer and Consumer

• thus, we can implement it using the singleton
pattern.

• Recall that the singleton pattern is not
necessarily thread-safe unless implemented
correctly.

• lazy vs. eager instantiation

• Let’s see why. . .



Queue: Lazy Instantiation

public class Queue {

private static final int CAPACITY = 5;

private List <Integer > dataQueue = new ArrayList <>();

private static Queue uniqueInstance;

private Queue() {}

public static Queue getInstance () {

if (uniqueInstance == null) {

uniqueInstance = new Queue ();

}

return uniqueInstance;

}

// enqueue(), dequeue ()...

}



Queue: Lazy Instantiation Pitfall
Consider the case in which the Producer and
Consumer running concurrently in separate threads
call Queue.getInstance() in order to access data
in the queue. . .

1 public static Queue getInstance () {

2 if (uniqueInstance == null) {

3 uniqueInstance = new Queue ();

4 }

5 return uniqueInstance;

6 }

If Consumer reaches line 2 before Producer has
instantiated uniqueInstance on line 3,
getInstance() will return two separate, unique
instances of Queue!



Queue: Eager Instantiation Fix

public class Queue {

private static final int CAPACITY = 5;

private List <Integer > dataQueue = new ArrayList <>();

private static Queue uniqueInstance = new Queue ();

private Queue() {}

public static Queue getInstance () {

return uniqueInstance;

}

// enqueue(), dequeue ()...

}

uniqueInstance is instantiated eagerly (i.e. before
we know we need it). What is another way of
addressing this thread-safety issue?



Queue: Synchronized getInstance Fix
public class Queue {

private static final int CAPACITY = 5;

private List <Integer > dataQueue = new ArrayList <>();

private static Queue uniqueInstance;

private Queue() {}

public static synchronized Queue getInstance () {

if (uniqueInstance == null) {

uniqueInstance = new Queue ();

}

return uniqueInstance;

}

// enqueue(), dequeue ()...

}

Here, we preserve lazy instantiation but synchronize
access to getInstance(), ensuring that only one
thread will be active in the method at a time.



Producer/Consumer Concept

• In this example (and often in practice),
Producers and Consumers are tasks running
concurrently in different threads while
exchanging information through a shared data
structure.

• Their execution is coordinated using
synchronized methods accessed within the
Queue object.



Producer

public class Producer implements Runnable {

@Override

public void run() {

Queue queue = Queue.getInstance ();

while (! Thread.interrupted ()) {

Integer newData = new Random (). nextInt ();

queue.enqueue(newData );

}

}

}



Consumer

public class Consumer implements Runnable {

@Override

public void run() {

Queue queue = Queue.getInstance ();

while (! Thread.interrupted ()) {

// consume the last value in the queue

queue.dequeue ();

}

}

}



Producer/Consumer: Guarded Blocks

• While the Producer and Consumer wait for the
Queue to be in an appropriate state (non-full or
non-empty, respectively), they must perform
guarded blocks.

• Guarded blocks allow the execution of threads
to be coordinated based upon the state of
shared variables.

• There are two types of guarded blocks:
• Bad: Busy waiting
• Good: Wait/notify



Queue: Guarded block with a busy wait

public class Queue {

private static final int CAPACITY = 5;

private List <Integer > dataQueue = new ArrayList <>();

private static Queue uniqueInstance;

// constructor , getInstance () ...

public void enqueue(Integer data) {

while (dataQueue.size() >= CAPACITY) {

// wait ...

}

dataQueue.add(data);

}

}

Spin in a while loop
while we wait for the
queue to be non-full.

Busy waits are a waste of processor resources!



Queue: Guarded block with wait/notify
public class Queue {

private static final int CAPACITY = 5;

private List <Integer > dataQueue = new ArrayList <>();

private static Queue uniqueInstance;

// constructor , getInstance () ...

public synchronized void enqueue(Integer data) {

while (dataQueue.size() >= CAPACITY) {

try {

wait ();

} catch (InterruptedException e) {

e.printStackTrace ();

}

}

dataQueue.add(data);

notifyAll ();

}

}



What’s happening here?

• enqueue is synchronized now. wait calls must
be performed by threads currently holding the
lock in a synchronized method or block.

• We still have a while loop: wait calls must
occur in a loop. Otherwise, our waiting thread
might be asleep when it’s notified by another
thread to wake.

• Despite the while loop, our call to wait signals
the thread scheduler to use processor resources
elsewhere
No more busy wait!



Queue: Guarded block on dequeue
public class Queue {

private static final int CAPACITY = 5;

private List <Integer > dataQueue = new ArrayList <>();

private static Queue uniqueInstance;

// constructor , getInstance (), enqueue ()...

public synchronized Integer dequeue () {

while (dataQueue.size() == 0) {

try {

wait ();

} catch (InterruptedException e) {

e.printStackTrace ();

}

}

notifyAll ();

return dataQueue.remove(dataQueue.size() - 1);

}

}



Producer/Consumer: Conclusion

• Using synchronization idioms, the execution of
two different threads (in this case, Producer
and Consumer) can be coordinated.

• Is synchronization always necessary?
• no, and in some cases it can be a detriment to

performance
• redundant when applied to threads that possess

mutually exclusive, private state


