
CS 351
Design of Large Programs

Concurrency Control

Brooke Chenoweth

University of New Mexico

Spring 2024



Concurrency Control Definition

• Layering of synchronization and control policies
over base mechanisms

• Key assumption: ground classes have been
designed to be amenable to the desired forms
of control

• Strategies
• adding policy control in subclasses
• controlling delegated actions
• representing messages as objects



Adding Synchronization Via Subclassing

• Ground level class
• provides non-public

methods
• enforces no invariants

• Subclass
• implements the

synchronization policy,
e.g.,

• atomic updates
• bounded counter

• delegates actions to
ground methods

GroundCounter

inc
dec
value

BoundedCounter

@ inc
@ dec
@ value



Bounded Counter Code

public class GroundCounter {

protected long count;

protected GroundCounter(long c) {

count = c;

}

protected long value () { return count; }

protected void inc() {

++count;

}

protected void dec() {

--count;

}

}



Bounded Counter Code
public class BoundedCounter extends GroundCounter {

private final long MIN , MAX;

public BoundedCounter(final long MIN , final long MAX) {

super(MIN);

this.MIN = MIN;

this.MAX = MAX;

}

public synchronized long value() { return super.value (); }

public synchronized void inc() {

while (value () >= MAX) {

try { wait (); } catch(InterruptedException e) {};

}

super.inc();

notifyAll ();

}

public synchronized void dec() {

while (value () <= MIN) {

try { wait (); } catch(InterruptedException e) {};

}

super.dec();

notifyAll ();

}

}



Anomalies to be Avoided
If all relevant variables and methods are declared
protected the subclass can generally implement
the desired policy
Frequent problems
• failing to track all conditions on which the
subclass depends

• differences in state representation
• immutable variable in the superclass is being
modified

• introducing waits for which the subclass has
not matching notifications

• extensions which require a transition from
notify to notifyAll



Layering Guards

• Ground level class
• ensures atomicity
• generates exception on empty

stack
• forces a busy wait solution in a

concurrent setting

• Subclass
• eliminates the exception

generation
• adopts a wait/notify protocol
• delegates select actions to

ground methods

Stack

@ isEmpty
@ push
@ pop

WaitingStack

@ push
@ pop



Waiting Stack Code
public class Stack {

public synchronized boolean isEmpty () { /* ... */ }

public synchronized void push(Object x) { /* ... */ }

public synchronized Object pop() throws StackEmptyException {

if (isEmpty ()) {

throw new StackEmptyException ();

} else {

// ...

}

}

}

public class WaitingStack extends Stack {

public synchronized void push(Object x) {

super.push(x);

notifyAll ();

}

public synchronized Object pop() throws StackEmptyException {

while(isEmpty ()) {

try { wait (); } catch (InterruptedException e) {}

}

return super.pop ();

}

}



Conflict Sets et al
• Design paradigm

• track the superclass state through the introduction
of auxiliary variables

• block method calls based on the current abstract
state of the superclass

• Sample formalizations
• conflict set
• conflict graph
• finite set control



Illustration: Inventory Control

(store, retrieve)
(retrieve, retrieve)

Conflict Set

store

retrieve

retrieve

Conflict Graph

Finite State control

retrieving=1

idle

storing > 0

retrieve:
retrieving+=1

store:
storing+=1

store return:
if storing=1
storing-=1

retrieve return:
retrieving-=1

store: storing+=1

store return if storing > 1: storing-=1



Illustration: Inventory Code
public class Inventory extends GroundInventory {

protected int storing = 0;

protected int retrieving= 0;

public void store(String desc , Object item ,

String supplier) {

synchronized (this) {

while (retrieving != 0) {

try { wait (); } catch (InterruptedException e) {}

}

++ storing;

}

super.store(desc , item , supplier );

synchronized (this) {

if (--storing == 0) {

notifyAll ();

}

}

}



Illustration: Inventory Code

public void retrieve(String desc , Object item ,

String supplier) {

synchronized (this) {

while (storing != 0) {

try { wait (); } catch (InterruptedException e) {}

}

++ retrieving;

}

super.retrieve(desc , item , supplier );

synchronized (this) {

if (--retrieving == 0) {

notifyAll ();

}

}

}



Readers and Writers: A Common Design
Pattern

• A simple conflict graph

• Readily ensured safety

• Major variations when it
comes to liveness and lack
of starvation

Conflict Graph

read

write

write



General Pattern

• Track the number of waiting and active readers
and writers

• Bracket the read/write operations with
before/after control code

• Same design accommodates a wide range of
policies



General Pattern Code
public abstract class ReadWrite {

protected int activeReaders = 0;

protected int activeWriters = 0;

protected int waitingReaders = 0;

protected int waitingWriters = 0;

protected abstract void doRead ();

protected abstract void doWrite ();

public void read() {

beforeRead ();

doRead ();

afterRead ();

}

public void write() {

beforeWrite ();

doWrite ();

afterWrite ();

}



Control Code: before/afterRead

protected synchronized void beforeRead () {

++ waitingReaders;

while (! allowReader ()) {

try { wait (); } catch (InterruptedException e) {}

}

--waitingReaders;

++ activeReaders;

}

protected synchronized void afterRead () {

--activeReaders;

notifyAll ();

}



Control Code: before/afterWrite

protected synchronized void beforeWrite () {

++ waitingWriters;

while (! allowWriter ()) {

try { wait (); } catch (InterruptedException e) {}

}

--waitingWriters;

++ activeWriters;

}

protected synchronized void afterWrite () {

--activeWriters;

notifyAll ();

}



Policy: Reading Priority
• Direct enforcement of the conflict set rules

• readers can read unless a writer is writing
• a writer can start writing if no other thread is

reading or writing

• Writers can be starved if readers continue to
use the resource

protected boolean allowReader () {

return activeWriters == 0;

}

protected boolean allowWriter () {

return activeReaders == 0 && activeWriters == 0;

}



Policy: Reading Preemption

• Writer starvation is prevented by blocking new
reading threads once a writer is waiting

• Readers can be kept out by multiple writers
waiting in line

protected boolean allowReader () {

return waitingWriters == 0 && activeWriters == 0;

}

protected boolean allowWriter () {

return activeReaders == 0 && activeWriters == 0;

}



Policy: Turn Taking

• If both readers and writers are waiting,
alternate between readers and writers

• Still, there is no guarantee that no readers or
writers are blocked forever



Policy: Turn Taking
private boolean canWrite;

public synchronized void afterRead () {

canWrite = true; // ... previous afterRead code ...

}

public synchronized void afterWrite () {

canWrite = false; // ... previous afterWrite code ...

}

protected boolean allowReader () {

if (waitingWriters > 0 && waitingReaders > 0) {

return !canWrite && activeWriters == 0;

}

return waitingWriters == 0 && activeWriters == 0;

}

protected boolean allowWriter () {

if (waitingWriters > 0 && waitingReaders > 0) {

return canWrite && activeWriters == 0;

}

return activeReaders == 0 && activeWriters == 0;

}



Policy: Custom Scheduler
• Each reader/writer makes a request and gets a
ticket number

• Each request and its type (read/write) is
placed in a queue according with some policy
that optimizes throughput and ensures fairness

• A writer starts working when its ticket is first in
the queue

• A reader starts working when its ticket is part
of a sequence of read requests at the front of
the queue

• Tickets are returned upon completion of the
operation

• Ticket counter is reset when no tickets are out



Basic Adapter Concept

• An adapter is a specialized wrapper that offers
a new interface based on an existing class

• The main advantages are
• flexibility

• a range of services based on an existing class
• dynamic changes of the base class in use

• reduced coding effort
• reuse of legacy code

• Adapters do not have access to protected fields
and methods

• this is distinct from subclassing



Example: Rocket
• Internal state

• location (point in 3D space, meters)
• velocity (3D vector, meters/sec)
• flight time (seconds)

• Methods
• read/update location
• read/update velocity
• increment flight time



Delegation

The interface is the same as
that of the ground class

• actions are simply
redirected

• returned values are passed
up

• What is the gain?
• flexibility

MyRocket

setLocation
getLocation

. . .

SomeRocket

setLocation
getLocation

. . .



Refactoring

Different methods are provided
and coded in terms of the
ground class

public void reset() {

setFlightTime (0);

setLocation(new PosPoint ());

setVelocity(new VelVec ());

}

public void step(VelVec vel) {

flightTime ++;

velocity = vel;

location.add(velocity );

}

MyRocket

reset
step
. . .

SomeRocket

setLocation
getLocation

. . .



Superposition
Superposition – a process by which variables are
introduced to monitor the state of the ground class

• to extend functionality without actually
affecting the state

• to facilitate reasoning about the computation

public void step(VelVec vel) {

flightTime ++;

velocity = vel;

location.add(velocity );

if(velocity.compare(MAX_SAFE_VEL) > 0) {

unsafeCount ++;

}

}



Proxy – A Useful Design Pattern
• Proxy – an object that stands in place of
another

• displays an appropriate veneer
• delegates all actions

• The original object may be a
• concrete object – present in the system and having

the same interface
• abstract object – the result of refactoring



Illustration: Proxy Examples

Operator

MyRocket

SomeRocket

this reference may
change over time

Operator

MyRocket

SomeRocket

Operator

MyRocket

Simulator

one of a set of objects
of the same class

this object may reside
at various remote
locations in the

network

provides the data
needed to create
the rocket proxy



Synchronized Adapters

• In the presence of
concurrency, objects
designed to function in a
single threaded
environment need to be
protected

• The wrapper can provide
the needed
synchronization (when the
ground object is private)

MyRocket

@ reset
@ step
. . .

SomeRocket

setLocation
getLocation

. . .



Synchronized Adapters with Access
Control

• An adapter can also introduce blocking of
threads in a way that is sensitive to the state of
the ground object

• Illustration: block thread waiting for a specific
target velocity to be reached and release it
when

• a reset has been issued (return false)
• the target velocity has been reached or exceeded

(return true)



Synchronized Adapters with Access
Control

public synchronized void step(VelVec vel) {

// ...

notifyAll ();

}

public synchronized void reset() {

// ...

notifyAll ();

}

public synchronized boolean targetVelocity(VelVec vel) {

// mag returns integer magnitude of vector

while (mag(velocity) != 0 && mag(velocity) < mag(vel)) {

try { wait (); } catch (InterruptedException e) { }

}

if(mag(velocity) == 0) return false; // reset issued

else return true; // target velocity reached

}

Does this work as expected?



Synchronized Adapters with Access
Control

public synchronized void step(VelVec vel) {

// ...

notifyAll ();

}

public synchronized void reset() {

// ...

notifyAll ();

}

public synchronized boolean targetVelocity(VelVec vel) {

// mag returns integer magnitude of vector

while (mag(velocity) != 0 && mag(velocity) < mag(vel)) {

try { wait (); } catch (InterruptedException e) { }

}

if(mag(velocity) == 0) return false; // reset issued

else return true; // target velocity reached

}

Does this work as expected?



What’s wrong?
When notifyAll is invoked in a synchronized
method M1:

1. An arbitrarily chosen waiting thread T is
removed from the waiting set

2. T blocks while re-obtaining the lock
• T blocks AT LEAST until M1 releases the lock – if

another synchronized method M2 acquires the lock
first, T continues to block!

3. T resumes from the point of wait

A thread in step may change shared state before T
resumes from the wait in targetVelocity!



Synchronized Adapters with Access
Control

public synchronized void step(VelVec vel) {

// ...

notifyAll ();

}

public synchronized void reset() {

// ...

tracking = false;

notifyAll ();

}

public synchronized boolean targetVelocity(VelVec vel) {

tracking = true; // remains true unless reset

while (tracking && mag(velocity) < mag(vel)) {

try { wait (); } catch (InterruptedException e) { }

}

if(! tracking) return false;

tracking = false;

return true;

}



Extending Atomicity
• An adapter can augment existing methods with
additional functionality while making the entire
operation atomic

• Illustration: augment the step method to
include a logging action

public synchronized void step(VelVec vel) {

flightTime ++;

velocity = vel;

location.add(velocity );

Log.addEntry(flightTime , location );

}

class Log {

public static synchronized void addEntry(int time ,

PosPoint loc) {

// store/print entry ...

}

}



Read Only Adapters

• It is often the case that data needs to be
protected against unauthorized modification

• A read-only wrapper gives full access to the
object data without the risk of being modified



Read Only Adapters

@ MyRocket

reset
step

extractors. . .

SomeRocket

setLocation
getLocation

. . .

Operator

MyRocketStatus

only extractors

Monitor

data integrity
problem here



Read Only Adapters

@ MyRocket

reset
step

extractors. . .

SomeRocket

setLocation
getLocation

. . .

Operator

MyRocketStatus

only extractors

Monitor

data integrity
problem here



Programming Concerns
• The methods of the immutable object should
be declared final

• The base object B should not be leaked to
users of the immutable object X

public final class MyRocketStatus {

private final int flightTime;

private final PosPoint location;

public MyRocketStatus(MyRocket rocket) {

flightTime = rocket.getFlightTime ();

location = rocket.getLocation ();

}

public int getFlightTime () { return flightTime; }

public PosPoint getLocation () { return location; }

}

public class Log {

public static synchronized void addEntry(MyRocketStatus stat) {

// store/print status ...

}

}



Acceptor

• receives requests in the form of messages

• interprets the messages within the context of a
system

• by considering pending requests

• by analyzing the program state

• by enforcing execution rules

• initiates actions performed by underlying
ground objects

public interface Acceptor {

public void accept(MessageType m);

}



Design Strategies
• An acceptor may

• employ its own private ground objects
• delegate actions to ground objects
• employ a dispatch table
• generate a thread for each response
• maintain state information
• schedule multiple agents
• maintain history logs
• filter and modify messages

• Acceptors may work in tandem



Event Loops
Key concepts and components

• event – the class of messages accepted
• buffer – holder of messages to be processed
• collector – recipient of events and known to
event producers

• processor – event dispatcher knowing the
ground objects

EventCollector

accept(event)

Buffer

put(event)
take()

EventProcessor



Sample Code Using Bounded Buffer

public class EventCollector implements Acceptor {

protected BlockingQueue <Event > buff;

public EventCollector () {

buff = new ArrayBlockingQueue < >(100);

new EventProcessor(buff);

}

public synchronized void accept(Event e) {

buff.put(e);

}

}



Sample Code Using Bounded Buffer
public class EventProcessor implements Runnable , Acceptor {

protected BlockingQueue <Event > buff;

public EventProcessor(BlockingQueue <Event > b) {

buff = b;

new Thread(this). start ();

}

public void run() {

while (true) {

accept(buff.take ());

}

}

public void accept(Event e) {

switch (e.eventCode ()) {

// dispatch ...

}

}

}


