
CS 351
Design of Large Programs

Object Design: Safety and Liveness

Brooke Chenoweth

University of New Mexico

Fall 2024



Software Assurance: Testing
Testing is an integral part of software development

• is a necessity at all levels

• is expensive

• can be simplified through the use of tools

• illuminates the existence of bugs

• fails to establish the absence of bugs

• is assisted by debugging tools and skills



Software Assurance: Testing
Concurrency make testing exceedingly difficult
• Program A

• 10 boolean variables
• 210 possible states

• Program B
• 10 boolean variables
• 210 possible states

• Concurrent execution
• 210 × 210 possible states
• 210 = 1024
• 220 = 1048576



Software Assurance: Verification
• Formal verification

• provides strong guarantees
• is difficult to carry out
• requires specialized knowledge and tools

• Good design facilitates both testing and
verification



Key Concepts in Verification
• Safety – the program does nothing wrong

• data integrity
• absence of deadlock

• Liveness – the program does something
• reaches a desired goal
• terminates



Example: Memory Compaction

A

B

C

D

E

F

G

A

B

C

D

E

F

G



Specification
• Safety

• the contents of each used memory block remains
unchanged

• the ordering of used memory blocks remains
unaltered

• the number of free space blocks remains unchanged

• Liveness
• the protocol reaches a state in which all free space

is contiguous located at the top



Safety Properties
• Invariant – a property that holds initially and
forever

• block A holds data XX
• block A is above block C

• Stable – a property which, once established,
holds forever

• all blocks below k th block are used blocks
• all blocks above k th block are free blocks



Liveness Properties
• Leads to – from a state S1 the Memory
Compaction program eventually reaches a state
S2

• S1: any memory state
• S2: all free space is at the top

• Metric – progress is measured by a decrease in
some useful metric

• sum of distances from the top of the memory to
each free block

• initial value: 0 + 2 + 5 + 6 + 10 = 23
• final value: 0 + 1 + 2 + 3 + 4 = 10



Important Observations

• The protocol may be implemented as a
sequential or concurrent program

• Concurrent threads should not interfere with
each other

• this is an important additional proof obligation
• the proof may be highly complex
• the program may be vulnerable to subtle errors

• It is desirable to ensure correctness by design
• at least when it comes to non-interference

(atomicity)



Design of Safe Objects
Conservative design strategies

• Immutability – avoiding state changes

• Synchronization – ensuring mutual exclusion

• Containment – structural restrictions ensuring
exclusive access



Immutable Objects: Reliance on
Constructors

• Fixed variables
can be initialized
in the constructor

• No methods to
change the
variable are
provided

public class Leader {

private final NodeId n;

public Leader(NodeId n) {

this.n = n;

}

// no setter for field!

}



Immutable Objects: Stateless Methods

• Methods that have
no bearing on the
state of the object

• Pure functions
• return value

depends only on
the passed
arguments

• return value may
also depend upon
immutable
variables

public class NumericalOps {

public static int add(int a,

int b) {

return a + b;

}

}

public class Leader {

private final NodeId n;

//...

public int rank(NodeId k) {

if (k.id() < n.id()) {

return n.id() - k.id();

} else {

return 0;

}

}

}



Immutable Objects: Copying Policy

• Making a local temporary copy and returning it
as the result of the computation protects the
original object

• Copy needs to be atomic in order to avoid
destroying data integrity

• The object passed as argument needs to offer
an atomic copy method

public int[] sort(int[] array) {

int[] copy = new int[array.length ];

// place sorted elements in copy ...

return copy;

}



Synchronized Objects: Full
Synchronization

• The goal is to ensure mutual exclusion among
all the methods accessing the object

• every method is synchronized
• no public fields are present

• Access to other object can break encapsulation!

• Careful analysis and discipline is required



Display Room Lighting

• Assume that we have a display room with
multiple light sources

• one and only one light is on at any one time

• a user can select a light to turn on

• a user can turn off the light, forcing some other
light to be turned on



Synchronized Object: Display Room
Lighting

public class LightControl {

private List <Light > lights;

private Light onLight;

private Random rand;

// initialize fields ...

public synchronized void on(Light light) {

if (onLight != null) onLight.turnOff ();

onLight = light;

onLight.turnOn ();

}

public synchronized void off() {

if (onLight != null) onLight.turnOff ();

onLight = lights.get(rand.nextInt(lights.size ()));

onLight.turnOn ();

}

}



Static Field Complications

• Synchronization assures mutual exclusion
among methods of the same object

• Methods of different objects can interfere with
each other if they access static fields

• Options:
• allow only static synchronized methods to access

static fields
• use block synchronization with a lock on that class

– getClass()



Protecting Static Fields: File Users
Counter

public class FileUsers {

private static int userCount = 0; // never access directly

protected void beginUsing () {

synchronized (getClass ()) {

++ userCount;

}

}

protected void endUsing () {

synchronized (getClass ()) {

--userCount;

}

}

public static synchronized int numberUsing () {

return userCount;

}

}



Partial Synchronization

• Only methods that can interfere with each
other are declared as synchronized

• Only sections of code where interference can
occur are protected by a synchronization block

synchronized(this) {

// code here ...

}



Partial Synchronization: Linked List
public class LinkedCell {

protected double value;

protected final LinkedCell next;

public LinkedCell (double value , LinkedCell next) {

this.value = value;

this.next = next;

}

public synchronized double getValue () { return value; }

public synchronized void setValue(double value) {

this.value = value;

}

public LinkedCell getNext () { return next; }

public double sum() { // add up element values

double v = getValue (); // get value via synchronized accessor

if (next() != null) { v += next (). sum (); }

return v;

}

}



Contained Objects: Exclusive Ownership
The outer object

• ensures that only one thread executes at a time
(synchronized methods)

• subordinate objects are locally created
• references to the subordinate objects are not
leaked

• not passed as arguments
• not passed as returned values



Exclusive Ownership Example

@ Monitor

TemperatureA/D Converter Valid Range

Min Max



Contained Objects: Managed Ownership

• It is often the case that ownership of a resource
may change over time

• Invariant: only one accessible reference exists
in the system at any one time

• Ownership transfer operations must be subject
to defined policies enforced by design



Liveness: Failure Modes
• Reliance on timing properties

• proofs of concurrent programs are meant to show
that under all possible interleaving of events the
execution is correct

• Contention on the CPU leading to starvation
• proofs of concurrent programs assume that no

thread is denied service by the OS

• Dormancy – a suspended thread never becomes
schedulable again

• suspend/resume and wait/notify pairing errors

• Premature termination

• Deadlock



Deadlock Prevention
• Every thread locks the resources it needs in the
same order

• The locking order is not always readily visible
• Complications arise when locks are deep inside
the object nesting structure
public class Document {

private Document otherPart;

public synchronized void print() {

// print this part of the document

}

public synchronized void printAll () {

otherPart.print ();

print ();

}

}



Deadlock Illustration

Thread 1

letter.printAll
letter is locked

letter.otherPart.print
blocked
waiting for enclosure

Thread 2

enclosure.printAll
enclosure is locked

enclosure.otherPart.print
blocked
waiting for letter



Deadlock Illustration

Thread 1
letter.printAll

letter is locked

letter.otherPart.print
blocked
waiting for enclosure

Thread 2

enclosure.printAll
enclosure is locked

enclosure.otherPart.print
blocked
waiting for letter



Deadlock Illustration

Thread 1
letter.printAll

letter is locked

letter.otherPart.print
blocked
waiting for enclosure

Thread 2

enclosure.printAll
enclosure is locked

enclosure.otherPart.print
blocked
waiting for letter



Additional Failure Modes
• Data integrity violations

• synchronized methods do not always guarantee
atomicity

• data inconsistencies lead to incorrect decisions

• Lack of progress
• progress made by one thread is undone by another

• Livelock
• threads take turns yielding to each other



Livelock Illustration

Thread 1

resource requested

contention on
resource?

Yes!
withdraw request
try later

Thread 2

resource requested

contention on
resource?

Yes!
withdraw request
try later



Livelock Illustration

Thread 1

resource requested
contention on
resource?

Yes!
withdraw request
try later

Thread 2

resource requested
contention on
resource?

Yes!
withdraw request
try later



Livelock Illustration

Thread 1

resource requested
contention on
resource?

Yes!

withdraw request
try later

Thread 2

resource requested
contention on
resource?

Yes!

withdraw request
try later



Livelock Illustration

Thread 1

resource requested
contention on
resource?

Yes!
withdraw request

try later

Thread 2

resource requested
contention on
resource?

Yes!
withdraw request

try later



Livelock Illustration

Thread 1

resource requested
contention on
resource?

Yes!
withdraw request
try later

Thread 2

resource requested
contention on
resource?

Yes!
withdraw request
try later



Livelock Illustration

Thread 1

resource requested
contention on
resource?

Yes!
withdraw request
try later

Thread 2

resource requested
contention on
resource?

Yes!
withdraw request
try later

How could we stop colliding?



Locking and Performance
• Synchronized methods and locks may introduce
performance penalties

• correctness must come first
• thoughtful analysis can ensure correctness and

enhance performance

• Instant variable analysis helps determine where
synchronization is or is not needed

• Proper design of object hierarchies may
simplify analysis and reduce the need for
synchronization



Interleaving Semantics

• Access and update methods are normally
synchronized

• A very long update can delay reading of the
data

• Two solutions:
• employ synchronization blocks
• let the access method be unsynchronized as long

as it returns one of only two values:
• the value before the update
• the value after the update



A Conservative Design Revisited
• All methods of Monitor are synchronized

• protection against any data inconsistencies

• Only one thread can use Monitor at a time

@ Monitor

TemperatureA/D Converter Valid Range

Min Max



Class Splitting
• Monitor can be redesigned

• by using synchronization only on contained objects
that need it

• Multiple threads can use Monitor concurrently

• More generally, contained objects may be
designed in order to achieve fine-grained
synchronization and increased levels of
concurrency



Class Splitting

Monitor

TemperatureA/D Converter Valid Range

@ Min @ Max



Lock Splitting

• Every Java Object can be a lock

• Synchronized methods use the object to which
they belong as a lock

• Another object could be used to accomplish
the same objective

• Using multiple locks allows subgroups of
methods to be mutually exclusive

• Going one step further, locks can be selectively
used in a state dependent manner



Sample Design Notation

@ queue

queue

@ put
@ take

queue

queue @ put
queue @ take

queue

P @ put
T @ take

All methods synchronized on queue Separate locks
for put and take



Sample Design Notation

@ queue

queue

@ put
@ take

queue

queue @ put
queue @ take

queue

P @ put
T @ take

All methods synchronized on queue Separate locks
for put and take


