CS 351

Design of Large Programs
Object Design: Safety and Liveness

Brooke Chenoweth

University of New Mexico

Fall 2024

Software Assurance: Testing

Testing is an integral part of software development

is a necessity at all levels

IS expensive

can be simplified through the use of tools
illuminates the existence of bugs

fails to establish the absence of bugs

is assisted by debugging tools and skills

Software Assurance: Testing

Concurrency make testing exceedingly difficult
® Program A
® 10 boolean variables
e 210 possible states
® Program B
® 10 boolean variables
e 210 possible states
e Concurrent execution

e 210 5 210 phossible states
e 210 — 1024
e 220 — 1048576

Software Assurance: Verification

e Formal verification
® provides strong guarantees
® s difficult to carry out
® requires specialized knowledge and tools
® Good design facilitates both testing and
verification

Key Concepts in Verification

e Safety — the program does nothing wrong
® data integrity
® absence of deadlock

® |iveness — the program does something

® reaches a desired goal
® terminates

Example: Memory Compaction

Specification
e Safety

® the contents of each used memory block remains
unchanged

® the ordering of used memory blocks remains
unaltered

® the number of free space blocks remains unchanged
® |iveness

® the protocol reaches a state in which all free space
is contiguous located at the top

Safety Properties

® [nvariant — a property that holds initially and
forever
® block A holds data XX
® block A is above block C

e Stable — a property which, once established,
holds forever

® all blocks below k" block are used blocks
e all blocks above k" block are free blocks

Liveness Properties

® [eads to — from a state S1 the Memory
Compaction program eventually reaches a state

S2

® S1: any memory state
® S2: all free space is at the top

e Metric — progress is measured by a decrease in
some useful metric
® sum of distances from the top of the memory to
each free block
® jnitial value: 0+2+4+5+6+10=23
® final value: 0+14+2+4+3+4=10

Important Observations

® The protocol may be implemented as a
sequential or concurrent program

e Concurrent threads should not interfere with
each other
® this is an important additional proof obligation
® the proof may be highly complex
® the program may be vulnerable to subtle errors
® |t is desirable to ensure correctness by design

® it least when it comes to non-interference
(atomicity)

Design of Safe Objects

Conservative design strategies
¢ |mmutability — avoiding state changes
e Synchronization — ensuring mutual exclusion

e Containment — structural restrictions ensuring
exclusive access

Immutable Objects: Reliance on

Constructors
o Fixed variables public class Leader {
can be initialized private final NodeId n;
in the constructor public Leader (NodeId n) {
this.n = n;
® No methods to }
change the // mo setter for field!
variable are r

provided

Immutable Objects: Stateless Methods

e Methods that have public class NumericalOps {

. public static int add(int a,
no bearing on the int by {
state of the object return a + b;

e Pure functions by

}
® return value

depends only on

public class Leader {

the passed private final NodeId n;
arguments /)
® return value may public int rank (NodeId k) {

if (k.id() < n.id()) {
return n.id() - k.id(Q);
} else {
return 0;

also depend upon
immutable
variables

}

}
¥

Immutable Objects: Copying Policy

e Making a local temporary copy and returning it
as the result of the computation protects the
original object

e Copy needs to be atomic in order to avoid
destroying data integrity

® The object passed as argument needs to offer
an atomic copy method

public int[] sort(int[] array) {
int [] copy = new int[array.length];
// place sorted elements in copy...
return copy;

3

Synchronized Objects: Full
Synchronization

® The goal is to ensure mutual exclusion among
all the methods accessing the object

® every method is synchronized
® no public fields are present

® Access to other object can break encapsulation!
e Careful analysis and discipline is required

Display Room Lighting
Assume that we have a display room with
multiple light sources
one and only one light is on at any one time
a user can select a light to turn on

a user can turn off the light, forcing some other
light to be turned on

Synchronized Object: Display Room
Lighting

public class LightControl {
private List<Light> lights;
private Light onLight;
private Random rand;
// initialize fields...

public synchronized void on(Light light) {
if (onLight != null) onLight.turnOff ();
onLight = light;
onLight.turnOn();

}

public synchronized void off () {
if (onLight != null) onLight.turnOff ();
onLight = lights.get(rand.nextInt(lights.size()));
onLight.turnOn();

}

Static Field Complications

® Synchronization assures mutual exclusion
among methods of the same object

e Methods of different objects can interfere with
each other if they access static fields
e Options:

allow only static synchronized methods to access
static fields

use block synchronization with a lock on that class
— getClass()

Protecting Static Fields: File Users
Counter

public class FileUsers {
private static int userCount = 0; // never access directly

protected void beginUsing() {
synchronized (getClass()) {
++userCount;
}
}

protected void endUsing() {
synchronized (getClass()) {
--userCount;
}
}

public static synchronized int numberUsing() {
return userCount;
}
}

Partial Synchronization

® Only methods that can interfere with each
other are declared as synchronized

® Only sections of code where interference can
occur are protected by a synchronization block

synchronized (this) {
// code here...
}

Partial Synchronization: Linked List

public class LinkedCell {
protected double value;
protected final LinkedCell next;

public LinkedCell (double value, LinkedCell mnext) {
this.value = value;
this.next = next;

public synchronized double getValue() { return value; }

public synchronized void setValue(double value) {
this.value = value;

}
public LinkedCell getNext() { return next; }

public double sum() { // add up element wvalues
double v = getValue(); // get walue via synchronized accessor
if (next() != null) { v += next(O.sum(); }
return v;
}
}

Contained Objects: Exclusive Ownership
The outer object

® ensures that only one thread executes at a time
(synchronized methods)

® subordinate objects are locally created

e references to the subordinate objects are not
leaked
® not passed as arguments
® not passed as returned values

Exclusive Ownership Example

@ Monitor
[
[|
A/D Converter | [Temperature | | Valid Range
| ! |
Min Max

Contained Objects: Managed Ownership

® |t is often the case that ownership of a resource
may change over time

e Invariant: only one accessible reference exists
in the system at any one time

e Ownership transfer operations must be subject
to defined policies enforced by design

Liveness: Failure Modes

Reliance on timing properties

® proofs of concurrent programs are meant to show
that under all possible interleaving of events the
execution is correct

Contention on the CPU leading to starvation

® proofs of concurrent programs assume that no
thread is denied service by the OS

Dormancy — a suspended thread never becomes
schedulable again

® suspend/resume and wait/notify pairing errors
Premature termination
Deadlock

Deadlock Prevention

e Every thread locks the resources it needs in the
same order

® The locking order is not always readily visible

e Complications arise when locks are deep inside
the object nesting structure

public class Document {

private Document otherPart;

public synchronized void print () {
// print this part of the document

}

public synchronized void printAll () {
otherPart.print ();
print O);

}

Deadlock lllustration

Thread 1 Thread 2

Deadlock lllustration

Thread 1 Thread 2
letter.printAll
letter is locked enclosure.printAll

enclosure is locked

Deadlock lllustration

Thread 1

letter.printAll
letter is locked

letter.otherPart.print

blocked
waiting for enclosure

Thread 2

enclosure.printAll
enclosure is locked

enclosure.otherPart.print

blocked
waiting for letter

Additional Failure Modes

e Data integrity violations

® synchronized methods do not always guarantee

atomicity

® data inconsistencies lead to incorrect decisions
® |ack of progress

® progress made by one thread is undone by another
e |ivelock

® threads take turns yielding to each other

Livelock Illustration

Thread 1 Thread 2
resource requested resource requested

Livelock Illustration

Thread 1 Thread 2
resource requested resource requested
contention on contention on

resource? resource?

Livelock Illustration

Thread 1 Thread 2
resource requested resource requested
contention on contention on
resource? resource?

Yes! Yes!

Livelock Illustration

Thread 1 Thread 2
resource requested resource requested
contention on contention on
resource? resource?

Yes! Yes!

withdraw request withdraw request

Livelock Illustration

Thread 1

resource requested
contention on
resource?

Yes!

withdraw request

try later

Thread 2

resource requested
contention on
resource?

Yes!

withdraw request

try later

Livelock Illustration

Thread 1 Thread 2
resource requested resource requested
contention on contention on
resource? resource?

Yes! Yes!
withdraw request withdraw request
try later try later

How could we stop colliding?

Locking and Performance

® Synchronized methods and locks may introduce
performance penalties

® correctness must come first
® thoughtful analysis can ensure correctness and
enhance performance

® |nstant variable analysis helps determine where
synchronization is or is not needed

® Proper design of object hierarchies may
simplify analysis and reduce the need for
synchronization

Interleaving Semantics

® Access and update methods are normally
synchronized

e A very long update can delay reading of the
data
® Two solutions:

® employ synchronization blocks
® let the access method be unsynchronized as long
as it returns one of only two values:

® the value before the update
® the value after the update

A Conservative Design Revisited

e All methods of Monitor are synchronized
® protection against any data inconsistencies

® Only one thread can use Monitor at a time

@ Monitor
[
[|
A/D Converter | [Temperature | | Valid Range
| ! |
Min Max

Class Splitting

® Monitor can be redesigned
® by using synchronization only on contained objects
that need it

® Multiple threads can use Monitor concurrently

® More generally, contained objects may be
designed in order to achieve fine-grained
synchronization and increased levels of
concurrency

Class Splitting

Monitor
0

A/D Converter

Temperature

Valid Range

@ Min © Max

Lock Splitting

Every Java Object can be a lock

Synchronized methods use the object to which
they belong as a lock

Another object could be used to accomplish
the same objective

Using multiple locks allows subgroups of
methods to be mutually exclusive

Going one step further, locks can be selectively
used in a state dependent manner

Sample Design Notation

@ queue

queue

queue

O put
© take

queue ©@ put
queue Q@ take

queue

P @ put
T © take

Sample Design Notation

@ queue

queue

queue

queue

© put queue @ put || P @ put

Ytake queue © take [| T @ take

All methods synchronized on queue

Separate locks
for put and take

