
University of New Mexico

1

CPU Virtualization: Scheduling with 
Multi-level Feedback Queues

Prof. Patrick G. Bridges



University of New Mexico

2

Reminder

 Schedulers seeks choose which job to run when to run 
given to optimize some scheduling metric
▪ Turn-around time

▪ Response time

▪ Lots of others…

 For systems with mixed workloads, there’s not generally 
an easy single metric to optimize

 General-purpose systems rely on heuristic schedulers that 
try to balance the qualitative performance of the system

 Question: What’s wrong with round robin?

 Aside: How hard is “optimal” scheduling for an arbitrary 
performance metric?



University of New Mexico

3

MLFQ (Multi-Level Feedback Queue)

Goal: general-purpose scheduling

Must support two job types with distinct goals
- “interactive” programs care about response time
- “batch” programs care about turnaround time

Approach: multiple levels of round-robin;
each level has higher priority than lower levels and 
preempts them



University of New Mexico

4

Basic Mechanism: Multiple 
Prioritized RR Queues

 Rule 1: If priority(A) > Priority(B), A runs

 Rule 2: If priority(A) == Priority(B), A & B run in RR

A

B

C

Q3

Q2

Q1

Q0 D

“Multi-level”

Policy: how to set priority?

Approach 1: "nice” command

Approach 2: history “feedback”



University of New Mexico

5

MLFQ: Basic Rules (Cont.)

 MLFQ varies the priority of a job based on its observed 
behavior.

 Example:
▪ A job repeatedly relinquishes the CPU while waiting IOs → Keep its 

priority high

▪ A job uses the CPU intensively for long periods of time → Reduce 
its priority.



University of New Mexico

6

MLFQ: How to Change Priority

 MLFQ priority adjustment algorithm:
▪ Rule 3: When a job enters the system, it is placed at the highest 

priority

▪ Rule 4a: If a job uses up an entire time slice while running, its 
priority is reduced (i.e., it moves down on queue).

▪ Rule 4b: If a job gives up the CPU before the time slice is up, it stays 
at the same priority level

In this manner, MLFQ approximates SJF



University of New Mexico

7

Example 1: A Single Long-Running Job

 A three-queue scheduler with time slice 10ms

0 50 100 150 200

Q2

Q1

Q0

Long-running Job Over Time (msec)



University of New Mexico

8

Example 2: Along Came a Short Job

 Assumption:
▪ Job A: A long-running CPU-intensive job

▪ Job B: A short-running interactive job (20ms runtime)

▪ A has been running for some time, and then B arrives at time 
T=100.

Along Came An Interactive Job (msec)

0 50 100 150 200

Q2

Q1

Q0

B:

A: 



University of New Mexico

9

Example 3: What About I/O?

 Assumption:
▪ Job A: A long-running CPU-intensive job

▪ Job B: An interactive job that need the CPU only for 1ms before 
performing an I/O

A Mixed I/O-intensive and CPU-intensive Workload (msec)

0 50 100 150 200

Q2

Q1

Q0

B:

A: 

The MLFQ approach keeps an interactive job at the highest priority



University of New Mexico

10

Problems with the Basic MLFQ

 Starvation
▪ If there are “too many” interactive jobs in the system.

▪ Lon-running jobs will never receive any CPU time.

 Game the scheduler
▪ After running 99% of a time slice, issue an I/O operation.

▪ The job gain a higher percentage of CPU time.

 A program may change its behavior over time.
▪ CPU bound process → I/O bound process



University of New Mexico

11

The Priority Boost

 Rule 5: After some time period S, move all the jobs in the 
system to the topmost queue.
▪ Example:

▪ A long-running job(A) with two short-running interactive job(B, 
C)

0 50 100 150 200

Q2

Q1

Q0

0 50 100 150 200

Q2

Q1

Q0

Without(Left) and With(Right) Priority Boost B:A: C:



University of New Mexico

12

Better Accounting

 How to prevent gaming of our scheduler?

 Solution:
▪ Rule 4 (Rewrite Rules 4a and 4b): Once a job uses up its time 

allotment at a given level (regardless of how many times it has 
given up the CPU), its priority is reduced(i.e., it moves down on 
queue).

0 50 100 150 200

Q2

Q1

Q0

0 50 100 150 200

Q2

Q1

Q0

Without(Left) and With(Right) Gaming Tolerance



University of New Mexico

13

The Solaris MLFQ implementation

 For the Time-Sharing scheduling class (TS)
▪ 60 Queues

▪ Slowly increasing time-slice length

▪ The highest priority: 20msec

▪ The lowest priority: A few hundred milliseconds

▪ Priorities boosted around every 1 second or so.



University of New Mexico

14

MLFQ: Summary

 The refined set of MLFQ rules:
▪ Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

▪ Rule 2: If Priority(A) = Priority(B), A & B run in RR.

▪ Rule 3: When a job enters the system, it is placed at the highest 
priority.

▪ Rule 4: Once a job uses up its time allotment at a given level 
(regardless of how many times it has given up the CPU), its priority 
is reduced(i.e., it moves down on queue).

▪ Rule 5: After some time period S, move all the jobs in the system to 
the topmost queue.



University of New Mexico

15

Some slides added by Jed...



University of New Mexico

16

https://commons.wikimedia.org/wiki/File:

Simplified_Structure_of_the_Linux_Kern

el.svg



University of New Mexico

17

O(1) scheduler (older)

⚫ Two arrays, switching between them is just changing a 
pointer

⚫ Uses heuristics to try to know which processes are 
interactive

− Average sleep time

⚫ https://en.wikipedia.org/wiki/O(1)_scheduler

https://en.wikipedia.org/wiki/O(1)_scheduler


University of New Mexico

18

CFS scheduler (currently in Linux)

⚫ Completely Fair Scheduler

⚫ Red-black tree of execution to the nanosecond

− niffies

⚫ Like weighted fair queuing for packet networks

⚫ An ideal processor would share equally

⚫ maximum execution time = time the process has been 
waiting to run / total number of processes

⚫ https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler


University of New Mexico

19

BFS (now MuQQS)

⚫ Brain “Hug” Scheduler

⚫ Specifically for desktops

⚫ Weighted round-robin where the weights are based on 
some very complex formulae (see Wikipedia for details)

⚫ No priority modification for sleep behavior

⚫ Time slice = 6ms (human perception of jitter ≈ 7ms)

⚫ Performs slightly better than CFS for <16 cores

⚫ https://en.wikipedia.org/wiki/Brain_Fuck_Scheduler

⚫ https://lwn.net/Articles/720227/

https://en.wikipedia.org/wiki/Brain_Fuck_Scheduler

