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Reminder

 Schedulers seeks choose which job to run when to run 
given to optimize some scheduling metric
▪ Turn-around time

▪ Response time

▪ Lots of others…

 For systems with mixed workloads, there’s not generally 
an easy single metric to optimize

 General-purpose systems rely on heuristic schedulers that 
try to balance the qualitative performance of the system

 Question: What’s wrong with round robin?

 Aside: How hard is “optimal” scheduling for an arbitrary 
performance metric?
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MLFQ (Multi-Level Feedback Queue)

Goal: general-purpose scheduling

Must support two job types with distinct goals
- “interactive” programs care about response time
- “batch” programs care about turnaround time

Approach: multiple levels of round-robin;
each level has higher priority than lower levels and 
preempts them
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Basic Mechanism: Multiple 
Prioritized RR Queues

 Rule 1: If priority(A) > Priority(B), A runs

 Rule 2: If priority(A) == Priority(B), A & B run in RR
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“Multi-level”

Policy: how to set priority?

Approach 1: "nice” command

Approach 2: history “feedback”
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MLFQ: Basic Rules (Cont.)

 MLFQ varies the priority of a job based on its observed 
behavior.

 Example:
▪ A job repeatedly relinquishes the CPU while waiting IOs → Keep its 

priority high

▪ A job uses the CPU intensively for long periods of time → Reduce 
its priority.
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MLFQ: How to Change Priority

 MLFQ priority adjustment algorithm:
▪ Rule 3: When a job enters the system, it is placed at the highest 

priority

▪ Rule 4a: If a job uses up an entire time slice while running, its 
priority is reduced (i.e., it moves down on queue).

▪ Rule 4b: If a job gives up the CPU before the time slice is up, it stays 
at the same priority level

In this manner, MLFQ approximates SJF
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Example 1: A Single Long-Running Job

 A three-queue scheduler with time slice 10ms
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Long-running Job Over Time (msec)
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Example 2: Along Came a Short Job

 Assumption:
▪ Job A: A long-running CPU-intensive job

▪ Job B: A short-running interactive job (20ms runtime)

▪ A has been running for some time, and then B arrives at time 
T=100.

Along Came An Interactive Job (msec)
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Example 3: What About I/O?

 Assumption:
▪ Job A: A long-running CPU-intensive job

▪ Job B: An interactive job that need the CPU only for 1ms before 
performing an I/O

A Mixed I/O-intensive and CPU-intensive Workload (msec)
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The MLFQ approach keeps an interactive job at the highest priority
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Problems with the Basic MLFQ

 Starvation
▪ If there are “too many” interactive jobs in the system.

▪ Lon-running jobs will never receive any CPU time.

 Game the scheduler
▪ After running 99% of a time slice, issue an I/O operation.

▪ The job gain a higher percentage of CPU time.

 A program may change its behavior over time.
▪ CPU bound process → I/O bound process
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The Priority Boost

 Rule 5: After some time period S, move all the jobs in the 
system to the topmost queue.
▪ Example:

▪ A long-running job(A) with two short-running interactive job(B, 
C)
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Without(Left) and With(Right) Priority Boost B:A: C:
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Better Accounting

 How to prevent gaming of our scheduler?

 Solution:
▪ Rule 4 (Rewrite Rules 4a and 4b): Once a job uses up its time 

allotment at a given level (regardless of how many times it has 
given up the CPU), its priority is reduced(i.e., it moves down on 
queue).
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The Solaris MLFQ implementation

 For the Time-Sharing scheduling class (TS)
▪ 60 Queues

▪ Slowly increasing time-slice length

▪ The highest priority: 20msec

▪ The lowest priority: A few hundred milliseconds

▪ Priorities boosted around every 1 second or so.
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MLFQ: Summary

 The refined set of MLFQ rules:
▪ Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

▪ Rule 2: If Priority(A) = Priority(B), A & B run in RR.

▪ Rule 3: When a job enters the system, it is placed at the highest 
priority.

▪ Rule 4: Once a job uses up its time allotment at a given level 
(regardless of how many times it has given up the CPU), its priority 
is reduced(i.e., it moves down on queue).

▪ Rule 5: After some time period S, move all the jobs in the system to 
the topmost queue.
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Some slides added by Jed...
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https://commons.wikimedia.org/wiki/File:

Simplified_Structure_of_the_Linux_Kern

el.svg
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O(1) scheduler (older)

⚫ Two arrays, switching between them is just changing a 
pointer

⚫ Uses heuristics to try to know which processes are 
interactive

− Average sleep time

⚫ https://en.wikipedia.org/wiki/O(1)_scheduler

https://en.wikipedia.org/wiki/O(1)_scheduler
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CFS scheduler (currently in Linux)

⚫ Completely Fair Scheduler

⚫ Red-black tree of execution to the nanosecond

− niffies

⚫ Like weighted fair queuing for packet networks

⚫ An ideal processor would share equally

⚫ maximum execution time = time the process has been 
waiting to run / total number of processes

⚫ https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
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BFS (now MuQQS)

⚫ Brain “Hug” Scheduler

⚫ Specifically for desktops

⚫ Weighted round-robin where the weights are based on 
some very complex formulae (see Wikipedia for details)

⚫ No priority modification for sleep behavior

⚫ Time slice = 6ms (human perception of jitter ≈ 7ms)

⚫ Performs slightly better than CFS for <16 cores

⚫ https://en.wikipedia.org/wiki/Brain_Fuck_Scheduler

⚫ https://lwn.net/Articles/720227/

https://en.wikipedia.org/wiki/Brain_Fuck_Scheduler

