University of New Mexico

Memory Virtualization: Segmentation

Prof. Patrick G. Bridges

University of New Mexico

Why not just Base and Bound?

OKB]
1KB | Program Code m Big chunk of “free” space

2KB .

2 m “free” space takes up physical memory.

4KB m Hard to run when an address space does not
5KB Heap

fit into physical memory

6KB l

(free)

14KB T

15KB Stack
16KB

Segmentation

m Segment is just a contiguous portion of the address space
of a particular length.

= |ogically-different segment: code, stack, heap

m Each segment can be placed in different part of physical
memory.

= Base and bounds exist per each segment.

University of New Mexico

Placing Segment In Physical Memory

OKB
Operating System
16KB
(not in use)
0 Segment Base Size
Stack Code 32K 2K
32KB (noz:lnduse) Heap 34K 2K
Hoan Stack 28K 2K
48KB (not in use)
64KB

Physical Memory

University of New Mexico

Address Translation on Segmentation

[physical address = of fset + base }

m The offset of virtual address 100 is 100.

= The code segment starts at virtual address 0 in address space.

Segment Base Size 16KB
Code 32K 2K
(not in use)

1 —— 32KB 100 + 32K or 32868
100 |instruction COde S is the desired
KB Program Code | 34KB physical address

Heap
4KB l
(not in use)

University of New Mexico

Address Translation on Segmentation(Cont.)

[Virtual address + base is not the correct physical address.]

m The offset of virtual address 4200 is 104.

= The heap segment starts at virtual address 4096 in address space.

Segment Base Size
Heap 34K 2K
(not in use)
32KB
Code
AKB AL, . 34KB 104 + 34K or 34920
4200| data ., Heap oo is 1.:he desired
6KB elap __________________ l 36KB physical address
(not in use)
Address Space

Physical Memory

Segmentation Fault or Violation

m If anillegal address such as 7KB which is beyond the end
of heap is referenced, the OS occurs segmentation faulit.
= The hardware detects that address is out of bounds.

4KB

Heap
oKB l
/KB (not in use)
8KB

Address Space

University of New Mexico

Referring to Segment

m Explicit approach

= Chop up the address space into segments based on the top few

bits of virtual address.
13 12 11 10 9 8 7 6 5 4 3 2 1 0

l \)
|

I
Segment Offset

m Example: virtual address 4200 (01000001101000)

Segment bits 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Code 00 o 1 0 0 0 0O O 1 1 0 1 0 0 O
Heap 01 | Jl |
Stack 10 | |

- 11 Segment Offset

University of New Mexico

Referring to Segment(Cont.)

// get top 2 bits of 14-bit VA
Segment = (VirtualAddress & SEG MASK) >> SEG SHIFT
// now get offset
Offset = VirtualAddress & OFFSET MASK
if (Offset >= Bounds|[Segment])
RaiseException (PROTECTION FAULT)
else
PhysAddr = Base[Segment] + Offset
Register = AccessMemory (PhysAddr)

©O© O J o U W N -

"= SEG MASK = 0x3000(11000000000000)
" SEG SHIFT = 12
= OFFSET MASK = OxFFF (00111111111111)

University of New Mexico

Referring to Stack Segment

m Stack grows backward.

m Extra hardware support is need.

= The hardware checks which way the segment grows.
= 1: positive direction, 0: negative direction

Segment Register(with Negative-Growth Support)

Segment Base Size Grows Positive?

(not in use)

Code 32K 2K 1
H 34K 2K 1
26KB 1 eap
Stack 28K 2K 0
Stack
28KB
(not in use)

Physical Memory

10

“Half of Operating Systems is Stupid
Memory Management Tricks” — P. Bridges

m Now: multiple processes, each with own address space

m Lots of optimization opportunities and subtle questions?

= How many copies of libc exist in the memory of the system at
once?

= What if we want to run more programs than we have physical
memory?

= Can physical memory be in multiple segments at the same time?

1

University of New Mexico

Support for Sharing

m Segment can be shared between address space.
" Code sharing is still in use in systems today (shared libraries, etc.)

= Needs extra hardware support.
m Extra hardware support is need for form of Protection bits.
= A few more bits per segment to indicate permissions of read,

write and execute.

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection
Code 32K 2K 1 Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K 0 Read-Write

m Who maintains these bits?

12

University of New Mexico

How many segments should we have?

m Coarse-grained (few segments) means segmentation in a
small number of segments.

= e.g., code, heap, stack.
= Relatively easy to manage
m Fine-grained (lots of segments) allows more flexibility for
stupid OS tricks

= The OS can do lots of things with lots of segments (e.g. map
multiple different shared libraries into multiple processes)

= Butthe OS has to manage the allocation of all of these segments
= Typically supported with a hardware segment table

13

Segmentation Problems: External

Fragmentation

m External Fragmentation: little holes of free space in
physical memory that make difficulty to allocate new
segments.

= There is 24KB free, but not in one contiguous segment.
= The OS cannot satisfy the 20KB request.

m Compaction: rearranging the exiting segments in physical

memory.
= Compaction is costly.
= Stop running process.
= Copy data to somewhere.
= Change segment register value.

m The more segments you have, the worse it is.

14

University of New Mexico

Memory Compaction

Not compacted Compacted
OKB OKB
8KB | Operating System 8KB | Operating System
16KB 16KB
(not in use)
24KB 24KB
Allocated Allocated
32KB . 32KB
(not in use)
40KB Allocated 40KB
48KB _ 48KB
(not In use) .
(not In use)
56KB 56KB
Allocated
64KB 64KB

15

University of New Mexico

Whence Segmentation

m Segmentation is variable length allocation

= Just like malloc free lists, with many of the same problems
= |t’s useful and flexible, but hard to mange well

= Particularly when you have lots of segments (e.g. from either lots
of segments per process or lots of processes)

m Modern OSes make only very limited use of segmentation

= 32-bit mode x86 (introduced with 80286) can use segments
extensively, but most OSes (e.g. Windows and Linux) don’t

= 64-bit mode x86 forces most segments to have a base address of 0

= With a very narrow exception usually used for thread-specific data

16

