
University of New Mexico

1

Memory Virtualization: Segmentation

Prof. Patrick G. Bridges

University of New Mexico

2

Why not just Base and Bound?

 Big chunk of “free” space

 “free” space takes up physical memory.

 Hard to run when an address space does not
fit into physical memory

(free)

14KB

Program Code

16KB

0KB

2KB

4KB

Heap

Stack

6KB

15KB

5KB

3KB

1KB

University of New Mexico

3

Segmentation

 Segment is just a contiguous portion of the address space
of a particular length.

▪ Logically-different segment: code, stack, heap

 Each segment can be placed in different part of physical
memory.
▪ Base and bounds exist per each segment.

University of New Mexico

4

Placing Segment In Physical Memory

0KB

16KB

32KB

48KB

64KB

Code

Physical Memory

(not in use)

(not in use)

Heap

Stack

Operating System

(not in use)

Segment Base Size

Code 32K 2K

Heap 34K 2K

Stack 28K 2K

University of New Mexico

5

Address Translation on Segmentation

 The offset of virtual address 100 is 100.

▪ The code segment starts at virtual address 0 in address space.

Segment Base Size

Code 32K 2K

0KB

2KB
Program Code

4KB

16KB

32KB
100 instruction

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑏𝑎𝑠𝑒

Heap

Code

(not in use)

(not in use)

34KB

𝟏𝟎𝟎 + 𝟑𝟐𝑲 𝒐𝒓 𝟑𝟐𝟖𝟔𝟖
is the desired

physical address

University of New Mexico

6

Address Translation on Segmentation(Cont.)

 The offset of virtual address 4200 is 104.

▪ The heap segment starts at virtual address 4096 in address space.

Segment Base Size

Heap 34K 2K

32KB

Heap

Code

(not in use)

(not in use)

34KB 𝟏𝟎𝟒 + 𝟑𝟒𝑲 𝒐𝒓 𝟑𝟒𝟗𝟐𝟎
is the desired

physical address
6KB

Heap

4KB

Address Space

Physical Memory

4200 data

36KB

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.

University of New Mexico

7

Segmentation Fault or Violation

 If an illegal address such as 7KB which is beyond the end
of heap is referenced, the OS occurs segmentation fault.

▪ The hardware detects that address is out of bounds.

6KB

Heap

4KB

(not in use)

Address Space

7KB

8KB

University of New Mexico

8

Referring to Segment

 Explicit approach
▪ Chop up the address space into segments based on the top few

bits of virtual address.

 Example: virtual address 4200 (01000001101000)

013 112 211 310 49 8 7 6 5

Segment Offset

013 112 211 310 49 8 7 6 5

Segment Offset

00 01 00 10 00 0 0 1 1

Segment bits

Code 00

Heap 01

Stack 10

- 11

University of New Mexico

9

Referring to Segment(Cont.)

▪ SEG_MASK = 0x3000(11000000000000)

▪ SEG_SHIFT = 12

▪ OFFSET_MASK = 0xFFF (00111111111111)

1 // get top 2 bits of 14-bit VA

2 Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT

3 // now get offset

4 Offset = VirtualAddress & OFFSET_MASK

5 if (Offset >= Bounds[Segment])

6 RaiseException(PROTECTION_FAULT)

7 else

8 PhysAddr = Base[Segment] + Offset

9 Register = AccessMemory(PhysAddr)

University of New Mexico

10

Referring to Stack Segment

 Stack grows backward.

 Extra hardware support is need.
▪ The hardware checks which way the segment grows.

▪ 1: positive direction, 0: negative direction

Segment Base Size Grows Positive?

Code 32K 2K 1

Heap 34K 2K 1

Stack 28K 2K 0
Stack

(not in use)

(not in use)

28KB

26KB

Physical Memory

Segment Register(with Negative-Growth Support)

University of New Mexico

11

“Half of Operating Systems is Stupid
Memory Management Tricks” – P. Bridges
 Now: multiple processes, each with own address space

 Lots of optimization opportunities and subtle questions?
▪ How many copies of libc exist in the memory of the system at

once?

▪ What if we want to run more programs than we have physical
memory?

▪ Can physical memory be in multiple segments at the same time?

University of New Mexico

12

Support for Sharing

 Segment can be shared between address space.
▪ Code sharing is still in use in systems today (shared libraries, etc.)

▪ Needs extra hardware support.

 Extra hardware support is need for form of Protection bits.
▪ A few more bits per segment to indicate permissions of read,

write and execute.

 Who maintains these bits?

Segment Base Size Grows Positive? Protection

Code 32K 2K 1 Read-Execute

Heap 34K 2K 1 Read-Write

Stack 28K 2K 0 Read-Write

Segment Register Values(with Protection)

University of New Mexico

13

How many segments should we have?

 Coarse-grained (few segments) means segmentation in a
small number of segments.

▪ e.g., code, heap, stack.

▪ Relatively easy to manage

 Fine-grained (lots of segments) allows more flexibility for
stupid OS tricks
▪ The OS can do lots of things with lots of segments (e.g. map

multiple different shared libraries into multiple processes)

▪ But the OS has to manage the allocation of all of these segments

▪ Typically supported with a hardware segment table

University of New Mexico

14

Segmentation Problems: External
Fragmentation
 External Fragmentation: little holes of free space in

physical memory that make difficulty to allocate new
segments.
▪ There is 24KB free, but not in one contiguous segment.

▪ The OS cannot satisfy the 20KB request.

 Compaction: rearranging the exiting segments in physical
memory.
▪ Compaction is costly.

▪ Stop running process.

▪ Copy data to somewhere.

▪ Change segment register value.

 The more segments you have, the worse it is.

University of New Mexico

15

Memory Compaction

0KB

16KB

32KB

48KB

64KB

Not compacted

Operating System8KB

24KB

40KB

56KB

Allocated

(not in use)

0KB

16KB

32KB

48KB

64KB

Operating System8KB

24KB

40KB

56KB

(not in use)

(not in use)

Allocated

(not in use)

Allocated

Allocated

Compacted

University of New Mexico

16

Whence Segmentation

 Segmentation is variable length allocation
▪ Just like malloc free lists, with many of the same problems

▪ It’s useful and flexible, but hard to mange well

▪ Particularly when you have lots of segments (e.g. from either lots
of segments per process or lots of processes)

 Modern OSes make only very limited use of segmentation
▪ 32-bit mode x86 (introduced with 80286) can use segments

extensively, but most OSes (e.g. Windows and Linux) don’t

▪ 64-bit mode x86 forces most segments to have a base address of 0

▪ With a very narrow exception usually used for thread-specific data

