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Memory Virtualization: Segmentation
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Why not just Base and Bound?

 Big chunk of “free” space

 “free” space takes up physical memory.

 Hard to run when an address space does not 
fit into physical memory
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Segmentation

 Segment is just a contiguous portion of the address space 
of a particular length.

▪ Logically-different segment: code, stack, heap

 Each segment can be placed in different part of physical 
memory.
▪ Base and bounds exist per each segment.



University of New Mexico

4

Placing Segment In Physical Memory
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Segment  Base Size
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Heap 34K 2K

Stack 28K 2K
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Address Translation on Segmentation

 The offset of virtual address 100 is 100.

▪ The code segment starts at virtual address 0 in address space.

Segment    Base Size

Code 32K 2K

0KB

2KB
Program Code

4KB

16KB

32KB
100 instruction

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑏𝑎𝑠𝑒

Heap

Code

(not in use)

(not in use)

34KB

𝟏𝟎𝟎 + 𝟑𝟐𝑲 𝒐𝒓 𝟑𝟐𝟖𝟔𝟖
is the desired 

physical address
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Address Translation on Segmentation(Cont.)

 The offset of virtual address 4200 is 104.

▪ The heap segment starts at virtual address 4096 in address space.

Segment    Base Size

Heap 34K 2K

32KB

Heap

Code

(not in use)

(not in use)

34KB 𝟏𝟎𝟒 + 𝟑𝟒𝑲 𝒐𝒓 𝟑𝟒𝟗𝟐𝟎
is the desired 

physical address
6KB

Heap

4KB

Address Space

Physical Memory

4200 data

36KB

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.
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Segmentation Fault or Violation

 If an illegal address such as 7KB which is beyond the end 
of heap is referenced, the OS occurs segmentation fault.

▪ The hardware detects that address is out of bounds. 

6KB

Heap

4KB

(not in use)

Address Space

7KB

8KB



University of New Mexico

8

Referring to Segment

 Explicit approach
▪ Chop up the address space into segments based on the top few 

bits of virtual address.

 Example: virtual address 4200 (01000001101000)

013 112 211 310 49 8 7 6 5

Segment Offset

013 112 211 310 49 8 7 6 5

Segment Offset

00 01 00 10 00 0 0 1 1

Segment  bits

Code 00

Heap 01

Stack 10

- 11
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Referring to Segment(Cont.)

▪ SEG_MASK = 0x3000(11000000000000)

▪ SEG_SHIFT = 12

▪ OFFSET_MASK = 0xFFF (00111111111111)

1   // get top 2 bits of 14-bit VA

2   Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT 

3 // now get offset 

4   Offset = VirtualAddress & OFFSET_MASK 

5   if (Offset >= Bounds[Segment]) 

6   RaiseException(PROTECTION_FAULT) 

7   else 

8   PhysAddr = Base[Segment] + Offset 

9   Register = AccessMemory(PhysAddr) 
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Referring to Stack Segment

 Stack grows backward.

 Extra hardware support is need.
▪ The hardware checks which way the segment grows.

▪ 1: positive direction, 0: negative direction 

Segment  Base Size  Grows Positive?

Code 32K 2K        1             

Heap 34K 2K        1 

Stack 28K 2K        0
Stack

(not in use)

(not in use)

28KB

26KB

Physical Memory

Segment Register(with Negative-Growth Support)
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“Half of Operating Systems is Stupid 
Memory Management Tricks” – P. Bridges
 Now: multiple processes, each with own address space

 Lots of optimization opportunities and subtle questions?
▪ How many copies of libc exist in the memory of the system at 

once?

▪ What if we want to run more programs than we have physical 
memory?

▪ Can physical memory be in multiple segments at the same time?
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Support for Sharing

 Segment can be shared between address space.
▪ Code sharing is still in use in systems today (shared libraries, etc.)

▪ Needs extra hardware support.

 Extra hardware support is need for form of Protection bits. 
▪ A few more bits per segment to indicate permissions of read,

write and execute. 

 Who maintains these bits?

Segment  Base Size  Grows Positive?  Protection

Code 32K 2K        1           Read-Execute             

Heap 34K 2K        1           Read-Write 

Stack 28K 2K        0           Read-Write

Segment Register Values(with Protection)
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How many segments should we have?

 Coarse-grained (few segments) means segmentation in a 
small number of segments.

▪ e.g., code, heap, stack.

▪ Relatively easy to manage

 Fine-grained (lots of segments) allows more flexibility for 
stupid OS tricks
▪ The OS can do lots of things with lots of segments (e.g. map 

multiple different shared libraries into multiple processes)

▪ But the OS has to manage the allocation of all of these segments

▪ Typically supported with a hardware segment table
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Segmentation Problems: External 
Fragmentation
 External Fragmentation: little holes of free space in 

physical memory that make difficulty to allocate new 
segments.
▪ There is 24KB free, but not in one contiguous segment.

▪ The OS cannot satisfy the 20KB request.

 Compaction: rearranging the exiting segments in physical 
memory.
▪ Compaction is costly.

▪ Stop running process.

▪ Copy data to somewhere.

▪ Change segment register value.

 The more segments you have, the worse it is.
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Memory Compaction
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Whence Segmentation

 Segmentation is variable length allocation
▪ Just like malloc free lists, with many of the same problems

▪ It’s useful and flexible, but hard to mange well

▪ Particularly when you have lots of segments (e.g. from either lots 
of segments per process or lots of processes)

 Modern OSes make only very limited use of segmentation
▪ 32-bit mode x86 (introduced with 80286) can use segments 

extensively, but most OSes (e.g. Windows and Linux) don’t

▪ 64-bit mode x86 forces most segments to have a base address of 0

▪ With a very narrow exception usually used for thread-specific data


