
University of New Mexico

1

Concurrency: Lock-based Data 
Structures

Prof. Patrick G. Bridges



University of New Mexico

2

Lock-based Concurrent Data structure

 Race Conditions happen around shared state

 Good programming practice generally encompasses state 
in a data structure or object

 Common Goal: Add locks to a data structure to makes the 
structure thread safe.

 Considerations
▪ Correctness: Does the data structure still do what we want?

▪ Scalability: More threads shouldn’t slow down operations

▪ These two goals are often in conflict.



University of New Mexico

3

Example: Concurrent Counters without 
Locks
 Simple, but not correct with multiple updaters

1 typedef struct __counter_t {

2 int value;

3 } counter_t;

4

5 void init(counter_t *c) {

6 c->value = 0;

7 }

8

9 void increment(counter_t *c) {

10 c->value++;

11 }

12

13 void decrement(counter_t *c) {

14 c->value--;

15 }

16

17 int get(counter_t *c) {

18 return c->value;

19 }



University of New Mexico

4

Example: Concurrent Counters with 
Locks
 Add a single lock acquired when calling a routine that 

manipulates the data structure.

 Reminder: Pthread_XXX is a wrapper around 
pthread_XXX with an error check
1 typedef struct __counter_t {

2 int value;

3 pthread_lock_t lock;

4 } counter_t;

5

6 void init(counter_t *c) {

7 c->value = 0;

8 Pthread_mutex_init(&c->lock, NULL);

9 }

10

11 void increment(counter_t *c) {

12 Pthread_mutex_lock(&c->lock);

13 c->value++;

14 Pthread_mutex_unlock(&c->lock);

15 }

16



University of New Mexico

5

Example: Concurrent Counters with 
Locks (Cont.)

(Cont.)

17 void decrement(counter_t *c) {

18 Pthread_mutex_lock(&c->lock);

19 c->value--;

20 Pthread_mutex_unlock(&c->lock);

21 }

22

23 int get(counter_t *c) {

24 Pthread_mutex_lock(&c->lock);

25 int rc = c->value;

26 Pthread_mutex_unlock(&c->lock);

27 return rc;

28 }



University of New Mexico

6

The performance costs of the simple 
approach
 Each thread updates a single shared counter.

▪ Each thread updates the counter one million times.

▪ iMac with four Intel 2.7GHz i5 CPUs.

Synchronized counter scales poorly.



University of New Mexico

7

Goal: Perfect Scaling

 Even though more work is done, it is done in parallel.

 The time taken to complete the task is not increased.

 For the counters example:
▪ Perfect scaling with N threads is N times the updates in the same 

time

▪ Our example went from less than 0.1 seconds with 1 thread to 
about 12 seconds with 4 threads

 Contending on locks and data structures is very expensive 
due to architectural reasons

▪ Cross-CPU communication (e.g. for locking)

▪ Cross-CPU cache interferences (the counter moves between CPU 
caches, so things that hit with 1 CPU miss all of the time with 2)



University of New Mexico

8

Sloppy counter

 A common approach: redefine the problem by relaxing 
consistency
▪ We often don’t need perfect count at any given time

▪ We just don’t want to lose any counts (we eventually see all 
increments)

 The sloppy counter works by representing …
▪ A single logical counter via numerous local physical counters, one 

per CPU core

▪ A single global counter

▪ There are locks:

▪ One for each local counter and one for the global counter

 Example: on a machine with four CPUs
▪ Four local counters

▪ One global counter



University of New Mexico

9

The basic idea of sloppy counting

 When a thread running on a core wishes to increment the 
counter.
▪ It increments its local counter.

▪ Each CPU has its own local counter:

▪ Threads across CPUs can update local counters without 
contention.

▪ Thus counter updates are scalable.

▪ The local values are periodically transferred to the global counter.

▪ Acquire the global lock

▪ Increment it by the local counter’s value

▪ The local counter is then reset to zero.



University of New Mexico

10

The basic idea of sloppy counting 
(Cont.)
 How often the local-to-global transfer occurs is 

determined by a threshold, S (sloppiness).
▪ The smaller S:

▪ The more the counter behaves like the non-scalable counter.

▪ The bigger S:

▪ The more scalable the counter.

▪ The further off the global value might be from the actual count.

 Note it’s not a counter per thread, it’s a counter per CPU
▪ Which is why we have a lock per local counter – multiple threads 

could update the counter on a single CPU

▪ A counter per thread would eliminate this, but result in a lot of 
state if you have a lot of threads



University of New Mexico

11

Sloppy counter example

 Tracing the Sloppy Counters
▪ The threshold S is set to 5.

▪ There are threads on each of four CPUs

▪ Each thread updates their local counters 𝐿1… 𝐿4.

Time 𝐋𝟏 𝐋𝟐 𝐋𝟑 𝐋𝟒 G

0 0 0 0 0 0

1 0 0 1 1 0

2 1 0 2 1 0

3 2 0 3 1 0

4 3 0 3 2 0

5 4 1 3 3 0

6 5 → 0 1 3 4 5 (from 𝐿1 )

7 0 2 4 5 → 0 10 (from 𝐿4)



University of New Mexico

12

Importance of the threshold value S

 Each four threads increments a counter 1 million times on 
four CPUs.
▪ Low S → Performance is poor, The global count is always quire 

accurate.

▪ High S → Performance is excellent, The global count lags.

Scaling Sloppy Counters



University of New Mexico

13

Sloppy Counter Implementation
1      typedef struct __counter_t {

2          int global; // global count

3          pthread_mutex_t glock; // global lock

4          int local[NUMCPUS]; // local count (per cpu)

5          pthread_mutex_t llock[NUMCPUS]; // ... and locks

6          int threshold; // update frequency

7      } counter_t;

8

9      // init: record threshold, init locks, init values

10     //       of all local counts and global count

11     void init(counter_t *c, int threshold) {

12         c->thres hold = threshold;

13

14         c->global = 0;

15         pthread_mutex_init(&c->glock, NULL);

16

17         int i;

18         for (i = 0; i < NUMCPUS; i++) {

19             c->local[i] = 0;

20             pthread_mutex_init(&c->llock[i], NULL);

21         }

22     }

23



University of New Mexico

14

Sloppy Counter Implementation (Cont.)
(Cont.)

24     // update: usually, just grab local lock and update local amount

25     //         once local count has risen by ’threshold’, grab global

26     //         lock and transfer local values to it

27     void update(counter_t *c, int threadID, int amt) {

28         pthread_mutex_lock(&c->llock[threadID]);

29         c->local[threadID] += amt; // assumes amt > 0

30         if (c->local[threadID] >= c->threshold) { // transfer to global

31             pthread_mutex_lock(&c->glock);

32             c->global += c->local[threadID];

33             pthread_mutex_unlock(&c->glock);

34             c->local[threadID] = 0;

35         }

36         pthread_mutex_unlock(&c->llock[threadID]);

37     }

38

39     // get: just return global amount (which may not be perfect)

40     int get(counter_t *c) {

41         pthread_mutex_lock(&c->glock);

42         int val = c->global;

43         pthread_mutex_unlock(&c->glock);

44         return val; // only approximate!

45     }



University of New Mexico

15

Concurrent Linked Lists

 Simple list with a single lock

1 // basic node structure

2 typedef struct __node_t {

3 int key;

4 struct __node_t *next;

5 } node_t;

6

7 // basic list structure (one used per list)

8 typedef struct __list_t {

9 node_t *head;

10 pthread_mutex_t lock;

11 } list_t;

12

13 void List_Init(list_t *L) {

14 L->head = NULL;

15 pthread_mutex_init(&L->lock, NULL);

16 }

17

(Cont.)



University of New Mexico

16

Concurrent Linked Lists

 Hold the lock to insert or remove from the list

(Cont.)

18 int List_Insert(list_t *L, int key) {

19 pthread_mutex_lock(&L->lock);

20 node_t *new = malloc(sizeof(node_t));

21 if (new == NULL) {

22 perror("malloc");

23 pthread_mutex_unlock(&L->lock);

24 return -1; // fail

25 }

26 new->key = key;

27 new->next = L->head;

28 L->head = new;

29 pthread_mutex_unlock(&L->lock);

30 return 0; // success

31 }

(Cont.)



University of New Mexico

17

Concurrent Linked Lists (Cont.)
(Cont.)

32

32 int List_Lookup(list_t *L, int key) {

33 pthread_mutex_lock(&L->lock);

34 node_t *curr = L->head;

35 while (curr) {

36 if (curr->key == key) {

37 pthread_mutex_unlock(&L->lock);

38 return 0; // success

39 }

40 curr = curr->next;

41 }

42 pthread_mutex_unlock(&L->lock);

43 return -1; // failure

44 }



University of New Mexico

18

Concurrent Linked Lists (Cont.)

 The code acquires a lock in the insert routine upon entry.

 The code releases the lock upon exit.
▪ If malloc() happens to fail, the code must also release the lock

before failing the insert.

▪ This kind of exceptional control flow has been shown to be quite 
error prone. 

▪ You have to release a single lock in multiple places

▪ Changes to how you lock/unlock have to propagate to multiple 
places in the code (and its easy to miss one).

▪ Solution: The lock and release only surround the actual critical 
section in the insert code

18Youjip Won



University of New Mexico

19

Concurrent Linked List Insert: Rewritten
1 void List_Init(list_t *L) {

2 L->head = NULL;

3 pthread_mutex_init(&L->lock, NULL);

4 }

5

6 void List_Insert(list_t *L, int key) {

7 // synchronization not needed

8 node_t *new = malloc(sizeof(node_t));

9 if (new == NULL) {

10 perror("malloc");

11 return;

12 }

13 new->key = key;

14

15 // just lock critical section

16 pthread_mutex_lock(&L->lock);

17 new->next = L->head;

18 L->head = new;

19 pthread_mutex_unlock(&L->lock);

20 }

21



University of New Mexico

20

Scaling Linked List

 Current linked list has poor scalability – lock the entire list 
while you walk it.

 Hand-over-hand locking (lock coupling)
▪ Add a lock per node of the list instead of having a single lock for 

the entire list.

▪ When traversing the list,

▪ First grabs the next node’s lock.

▪ And then releases the current node’s lock.

▪ Enable a high degree of concurrency in list operations.

▪ However, in practice, the overheads of acquiring and releasing 
locks for each node of a list traversal is prohibitive.

 Scaling arbitrary linked lists is difficult because the sheer 
amount of state to be protected



University of New Mexico

21

Michael and Scott Concurrent Queues

 What if all we want is a queue?

 There are two locks.
▪ One for the head of the queue.

▪ One for the tail.

▪ The goal of these two locks is to enable concurrency of enqueue
and dequeue operations.

 Add a dummy node
▪ Allocated in the queue initialization code

▪ Enable the separation of head and tail operations



University of New Mexico

22

Concurrent Queues (Cont.)
1 typedef struct __node_t {

2 int value;

3 struct __node_t *next;

4 } node_t;

5

6 typedef struct __queue_t {

7 node_t *head;

8 node_t *tail;

9 pthread_mutex_t headLock;

10 pthread_mutex_t tailLock;

11 } queue_t;

12

13 void Queue_Init(queue_t *q) {

14 node_t *tmp = malloc(sizeof(node_t));

15 tmp->next = NULL;

16 q->head = q->tail = tmp;

17 pthread_mutex_init(&q->headLock, NULL);

18 pthread_mutex_init(&q->tailLock, NULL);

19 }

20

(Cont.)



University of New Mexico

23

Concurrent Queues (Cont.)

(Cont.)

21 void Queue_Enqueue(queue_t *q, int value) {

22 node_t *tmp = malloc(sizeof(node_t));

23 assert(tmp != NULL);

24

25 tmp->value = value;

26 tmp->next = NULL;

27

28 pthread_mutex_lock(&q->tailLock);

29 q->tail->next = tmp;

30 q->tail = tmp;

31 pthread_mutex_unlock(&q->tailLock);

32 }

(Cont.)



University of New Mexico

24

Concurrent Queues (Cont.)

(Cont.)

33 int Queue_Dequeue(queue_t *q, int *value) {

34 pthread_mutex_lock(&q->headLock);

35 node_t *tmp = q->head;

36 node_t *newHead = tmp->next;

37 if (newHead == NULL) {

38 pthread_mutex_unlock(&q->headLock);

39 return -1; // queue was empty

40 }

41 *value = newHead->value;

42 q->head = newHead;

43 pthread_mutex_unlock(&q->headLock);

44 free(tmp);

45 return 0;

46 }



University of New Mexico

25

Concurrent Hash Table

 Focus on a simple hash table
▪ The hash table does not resize.

▪ Built using the concurrent lists

▪ It uses a lock per hash bucket each of which is represented by a list.



University of New Mexico

26

Performance of Concurrent Hash Table

 From 10,000 to 50,000 concurrent updates from each of 
four threads.
▪ iMac with four Intel 2.7GHz i5 CPUs.

• The simple concurrent hash table scales magnificently.
• With few threads << buckets, threads are generally on independent lists! 



University of New Mexico

27

Concurrent Hash Table
1 #define BUCKETS (101)

2

3 typedef struct __hash_t {

4 list_t lists[BUCKETS];

5 } hash_t;

6

7 void Hash_Init(hash_t *H) {

8 int i;

9 for (i = 0; i < BUCKETS; i++) {

10 List_Init(&H->lists[i]);

11 }

12 }

13

14 int Hash_Insert(hash_t *H, int key) {

15 int bucket = key % BUCKETS;

16 return List_Insert(&H->lists[bucket], key);

17 }

18

19 int Hash_Lookup(hash_t *H, int key) {

20 int bucket = key % BUCKETS;

21 return List_Lookup(&H->lists[bucket], key);

22 }


