
University of New Mexico

1

Concurrency: Lock-based Data
Structures

Prof. Patrick G. Bridges

University of New Mexico

2

Lock-based Concurrent Data structure

 Race Conditions happen around shared state

 Good programming practice generally encompasses state
in a data structure or object

 Common Goal: Add locks to a data structure to makes the
structure thread safe.

 Considerations
▪ Correctness: Does the data structure still do what we want?

▪ Scalability: More threads shouldn’t slow down operations

▪ These two goals are often in conflict.

University of New Mexico

3

Example: Concurrent Counters without
Locks
 Simple, but not correct with multiple updaters

1 typedef struct __counter_t {

2 int value;

3 } counter_t;

4

5 void init(counter_t *c) {

6 c->value = 0;

7 }

8

9 void increment(counter_t *c) {

10 c->value++;

11 }

12

13 void decrement(counter_t *c) {

14 c->value--;

15 }

16

17 int get(counter_t *c) {

18 return c->value;

19 }

University of New Mexico

4

Example: Concurrent Counters with
Locks
 Add a single lock acquired when calling a routine that

manipulates the data structure.

 Reminder: Pthread_XXX is a wrapper around
pthread_XXX with an error check
1 typedef struct __counter_t {

2 int value;

3 pthread_lock_t lock;

4 } counter_t;

5

6 void init(counter_t *c) {

7 c->value = 0;

8 Pthread_mutex_init(&c->lock, NULL);

9 }

10

11 void increment(counter_t *c) {

12 Pthread_mutex_lock(&c->lock);

13 c->value++;

14 Pthread_mutex_unlock(&c->lock);

15 }

16

University of New Mexico

5

Example: Concurrent Counters with
Locks (Cont.)

(Cont.)

17 void decrement(counter_t *c) {

18 Pthread_mutex_lock(&c->lock);

19 c->value--;

20 Pthread_mutex_unlock(&c->lock);

21 }

22

23 int get(counter_t *c) {

24 Pthread_mutex_lock(&c->lock);

25 int rc = c->value;

26 Pthread_mutex_unlock(&c->lock);

27 return rc;

28 }

University of New Mexico

6

The performance costs of the simple
approach
 Each thread updates a single shared counter.

▪ Each thread updates the counter one million times.

▪ iMac with four Intel 2.7GHz i5 CPUs.

Synchronized counter scales poorly.

University of New Mexico

7

Goal: Perfect Scaling

 Even though more work is done, it is done in parallel.

 The time taken to complete the task is not increased.

 For the counters example:
▪ Perfect scaling with N threads is N times the updates in the same

time

▪ Our example went from less than 0.1 seconds with 1 thread to
about 12 seconds with 4 threads

 Contending on locks and data structures is very expensive
due to architectural reasons

▪ Cross-CPU communication (e.g. for locking)

▪ Cross-CPU cache interferences (the counter moves between CPU
caches, so things that hit with 1 CPU miss all of the time with 2)

University of New Mexico

8

Sloppy counter

 A common approach: redefine the problem by relaxing
consistency
▪ We often don’t need perfect count at any given time

▪ We just don’t want to lose any counts (we eventually see all
increments)

 The sloppy counter works by representing …
▪ A single logical counter via numerous local physical counters, one

per CPU core

▪ A single global counter

▪ There are locks:

▪ One for each local counter and one for the global counter

 Example: on a machine with four CPUs
▪ Four local counters

▪ One global counter

University of New Mexico

9

The basic idea of sloppy counting

 When a thread running on a core wishes to increment the
counter.
▪ It increments its local counter.

▪ Each CPU has its own local counter:

▪ Threads across CPUs can update local counters without
contention.

▪ Thus counter updates are scalable.

▪ The local values are periodically transferred to the global counter.

▪ Acquire the global lock

▪ Increment it by the local counter’s value

▪ The local counter is then reset to zero.

University of New Mexico

10

The basic idea of sloppy counting
(Cont.)
 How often the local-to-global transfer occurs is

determined by a threshold, S (sloppiness).
▪ The smaller S:

▪ The more the counter behaves like the non-scalable counter.

▪ The bigger S:

▪ The more scalable the counter.

▪ The further off the global value might be from the actual count.

 Note it’s not a counter per thread, it’s a counter per CPU
▪ Which is why we have a lock per local counter – multiple threads

could update the counter on a single CPU

▪ A counter per thread would eliminate this, but result in a lot of
state if you have a lot of threads

University of New Mexico

11

Sloppy counter example

 Tracing the Sloppy Counters
▪ The threshold S is set to 5.

▪ There are threads on each of four CPUs

▪ Each thread updates their local counters 𝐿1… 𝐿4.

Time 𝐋𝟏 𝐋𝟐 𝐋𝟑 𝐋𝟒 G

0 0 0 0 0 0

1 0 0 1 1 0

2 1 0 2 1 0

3 2 0 3 1 0

4 3 0 3 2 0

5 4 1 3 3 0

6 5 → 0 1 3 4 5 (from 𝐿1)

7 0 2 4 5 → 0 10 (from 𝐿4)

University of New Mexico

12

Importance of the threshold value S

 Each four threads increments a counter 1 million times on
four CPUs.
▪ Low S → Performance is poor, The global count is always quire

accurate.

▪ High S → Performance is excellent, The global count lags.

Scaling Sloppy Counters

University of New Mexico

13

Sloppy Counter Implementation
1 typedef struct __counter_t {

2 int global; // global count

3 pthread_mutex_t glock; // global lock

4 int local[NUMCPUS]; // local count (per cpu)

5 pthread_mutex_t llock[NUMCPUS]; // ... and locks

6 int threshold; // update frequency

7 } counter_t;

8

9 // init: record threshold, init locks, init values

10 // of all local counts and global count

11 void init(counter_t *c, int threshold) {

12 c->thres hold = threshold;

13

14 c->global = 0;

15 pthread_mutex_init(&c->glock, NULL);

16

17 int i;

18 for (i = 0; i < NUMCPUS; i++) {

19 c->local[i] = 0;

20 pthread_mutex_init(&c->llock[i], NULL);

21 }

22 }

23

University of New Mexico

14

Sloppy Counter Implementation (Cont.)
(Cont.)

24 // update: usually, just grab local lock and update local amount

25 // once local count has risen by ’threshold’, grab global

26 // lock and transfer local values to it

27 void update(counter_t *c, int threadID, int amt) {

28 pthread_mutex_lock(&c->llock[threadID]);

29 c->local[threadID] += amt; // assumes amt > 0

30 if (c->local[threadID] >= c->threshold) { // transfer to global

31 pthread_mutex_lock(&c->glock);

32 c->global += c->local[threadID];

33 pthread_mutex_unlock(&c->glock);

34 c->local[threadID] = 0;

35 }

36 pthread_mutex_unlock(&c->llock[threadID]);

37 }

38

39 // get: just return global amount (which may not be perfect)

40 int get(counter_t *c) {

41 pthread_mutex_lock(&c->glock);

42 int val = c->global;

43 pthread_mutex_unlock(&c->glock);

44 return val; // only approximate!

45 }

University of New Mexico

15

Concurrent Linked Lists

 Simple list with a single lock

1 // basic node structure

2 typedef struct __node_t {

3 int key;

4 struct __node_t *next;

5 } node_t;

6

7 // basic list structure (one used per list)

8 typedef struct __list_t {

9 node_t *head;

10 pthread_mutex_t lock;

11 } list_t;

12

13 void List_Init(list_t *L) {

14 L->head = NULL;

15 pthread_mutex_init(&L->lock, NULL);

16 }

17

(Cont.)

University of New Mexico

16

Concurrent Linked Lists

 Hold the lock to insert or remove from the list

(Cont.)

18 int List_Insert(list_t *L, int key) {

19 pthread_mutex_lock(&L->lock);

20 node_t *new = malloc(sizeof(node_t));

21 if (new == NULL) {

22 perror("malloc");

23 pthread_mutex_unlock(&L->lock);

24 return -1; // fail

25 }

26 new->key = key;

27 new->next = L->head;

28 L->head = new;

29 pthread_mutex_unlock(&L->lock);

30 return 0; // success

31 }

(Cont.)

University of New Mexico

17

Concurrent Linked Lists (Cont.)
(Cont.)

32

32 int List_Lookup(list_t *L, int key) {

33 pthread_mutex_lock(&L->lock);

34 node_t *curr = L->head;

35 while (curr) {

36 if (curr->key == key) {

37 pthread_mutex_unlock(&L->lock);

38 return 0; // success

39 }

40 curr = curr->next;

41 }

42 pthread_mutex_unlock(&L->lock);

43 return -1; // failure

44 }

University of New Mexico

18

Concurrent Linked Lists (Cont.)

 The code acquires a lock in the insert routine upon entry.

 The code releases the lock upon exit.
▪ If malloc() happens to fail, the code must also release the lock

before failing the insert.

▪ This kind of exceptional control flow has been shown to be quite
error prone.

▪ You have to release a single lock in multiple places

▪ Changes to how you lock/unlock have to propagate to multiple
places in the code (and its easy to miss one).

▪ Solution: The lock and release only surround the actual critical
section in the insert code

18Youjip Won

University of New Mexico

19

Concurrent Linked List Insert: Rewritten
1 void List_Init(list_t *L) {

2 L->head = NULL;

3 pthread_mutex_init(&L->lock, NULL);

4 }

5

6 void List_Insert(list_t *L, int key) {

7 // synchronization not needed

8 node_t *new = malloc(sizeof(node_t));

9 if (new == NULL) {

10 perror("malloc");

11 return;

12 }

13 new->key = key;

14

15 // just lock critical section

16 pthread_mutex_lock(&L->lock);

17 new->next = L->head;

18 L->head = new;

19 pthread_mutex_unlock(&L->lock);

20 }

21

University of New Mexico

20

Scaling Linked List

 Current linked list has poor scalability – lock the entire list
while you walk it.

 Hand-over-hand locking (lock coupling)
▪ Add a lock per node of the list instead of having a single lock for

the entire list.

▪ When traversing the list,

▪ First grabs the next node’s lock.

▪ And then releases the current node’s lock.

▪ Enable a high degree of concurrency in list operations.

▪ However, in practice, the overheads of acquiring and releasing
locks for each node of a list traversal is prohibitive.

 Scaling arbitrary linked lists is difficult because the sheer
amount of state to be protected

University of New Mexico

21

Michael and Scott Concurrent Queues

 What if all we want is a queue?

 There are two locks.
▪ One for the head of the queue.

▪ One for the tail.

▪ The goal of these two locks is to enable concurrency of enqueue
and dequeue operations.

 Add a dummy node
▪ Allocated in the queue initialization code

▪ Enable the separation of head and tail operations

University of New Mexico

22

Concurrent Queues (Cont.)
1 typedef struct __node_t {

2 int value;

3 struct __node_t *next;

4 } node_t;

5

6 typedef struct __queue_t {

7 node_t *head;

8 node_t *tail;

9 pthread_mutex_t headLock;

10 pthread_mutex_t tailLock;

11 } queue_t;

12

13 void Queue_Init(queue_t *q) {

14 node_t *tmp = malloc(sizeof(node_t));

15 tmp->next = NULL;

16 q->head = q->tail = tmp;

17 pthread_mutex_init(&q->headLock, NULL);

18 pthread_mutex_init(&q->tailLock, NULL);

19 }

20

(Cont.)

University of New Mexico

23

Concurrent Queues (Cont.)

(Cont.)

21 void Queue_Enqueue(queue_t *q, int value) {

22 node_t *tmp = malloc(sizeof(node_t));

23 assert(tmp != NULL);

24

25 tmp->value = value;

26 tmp->next = NULL;

27

28 pthread_mutex_lock(&q->tailLock);

29 q->tail->next = tmp;

30 q->tail = tmp;

31 pthread_mutex_unlock(&q->tailLock);

32 }

(Cont.)

University of New Mexico

24

Concurrent Queues (Cont.)

(Cont.)

33 int Queue_Dequeue(queue_t *q, int *value) {

34 pthread_mutex_lock(&q->headLock);

35 node_t *tmp = q->head;

36 node_t *newHead = tmp->next;

37 if (newHead == NULL) {

38 pthread_mutex_unlock(&q->headLock);

39 return -1; // queue was empty

40 }

41 *value = newHead->value;

42 q->head = newHead;

43 pthread_mutex_unlock(&q->headLock);

44 free(tmp);

45 return 0;

46 }

University of New Mexico

25

Concurrent Hash Table

 Focus on a simple hash table
▪ The hash table does not resize.

▪ Built using the concurrent lists

▪ It uses a lock per hash bucket each of which is represented by a list.

University of New Mexico

26

Performance of Concurrent Hash Table

 From 10,000 to 50,000 concurrent updates from each of
four threads.
▪ iMac with four Intel 2.7GHz i5 CPUs.

• The simple concurrent hash table scales magnificently.
• With few threads << buckets, threads are generally on independent lists!

University of New Mexico

27

Concurrent Hash Table
1 #define BUCKETS (101)

2

3 typedef struct __hash_t {

4 list_t lists[BUCKETS];

5 } hash_t;

6

7 void Hash_Init(hash_t *H) {

8 int i;

9 for (i = 0; i < BUCKETS; i++) {

10 List_Init(&H->lists[i]);

11 }

12 }

13

14 int Hash_Insert(hash_t *H, int key) {

15 int bucket = key % BUCKETS;

16 return List_Insert(&H->lists[bucket], key);

17 }

18

19 int Hash_Lookup(hash_t *H, int key) {

20 int bucket = key % BUCKETS;

21 return List_Lookup(&H->lists[bucket], key);

22 }

