Abstract
We previously described a tic-tac-toe playing molecular automaton, MAYA-II, constructed from a molecular array of deoxyribozyme-based logic gates, that uses oligonucleotides as inputs and outputs. We are now developing an ensemble modeling tool for high-throughput oligonucleotide input and logic gate designs. The modeling tool is based on exhaustive reconstruction of both intended and unintended reactions between MAYA-II gates and inputs, and seeks to directly correlate empirical observations with computational predictions. Here we describe exhaustive analysis of the MAYA-II Yes logic gates folding structures, both alone and in conjunction with the MAYA-II oligonucleotide inputs. Results indicate that in silico modeling accurately reflects experimental results, creating a predictive value and benchmark for future high-throughput oligonucleotide input and Yes gate designs. These studies serve purpose towards our goal of constructing a generalized oligonucleotide design library for expansion of molecular computation beyond hundreds, to millions of potential interactions, conferring greater functionality in terms of both reliability and complexity.
Type
Publication
15th International Meeting on DNA Computing and Molecular Programming