CS251L

REVIEW

Java Applications

Java application defined by a Java class with a
main method
public static void main(String[] args)

args is an array of strings represented the command line
parameters passed to the application

The public class must match the name of the file

Java Applications

Though usually hidden when using an IDE, know that
the “javac” command compiles .java files, and the
“lava” command executes the resulting Java
applications

cd MyCode/

javac MyApp.java

java MyApp

Java Applications

Whereas historically most programming languages
have been designed to be completely compiled (C,
C++) or completely interpreted (Perl, Python,
JavaScript), Java is both compiled, and then interpreted

The “javac” command compiles Java code into
“bytecode” and then the “java” command interprets this
bytecode

Eclipse executes both of these for you “under the hood”

One seminal goal of Java was platform independence

Data Types

Understanding data types foundation of all
programming
Two general categories in any language:
Primitive data types
Abstract data types (classes)
Not all programming languages have the exact

same primitive data types, but the overlap is large
among compiled languages

25 24 23 22 2!
32 16 8 4 2

——

1 Bit

1 Nibble = 4 Bits

1 Byte = 2 Nibbles = 8 Bits

Unsigned Byte
Min Value:

0 (all off)

Max Value:
255 (all on)
Total # Possible
Valuves:

256 = 28
Signed Byte
Min Value:
-128

Max Value:
127

Total # Possible
Valves:

256 still

128 64 32 16 8 4 2

64+8+2+1=75=K —

1 Bit

1 Nibble = 4 Bits

1 Byte = 2 Nibbles = 8 Bits

Unsigned Byte
Min Value:

0 (all off)

Max Value:
255 (all on)
Total # Possible
Valuves:

256 = 28
Signed Byte
Min Value:
-128

Max Value:
127

Total # Possible
Valves:

256 still

Primitive Data Types

boolean [1 bit]: true, false

byte [8 bits]: -128 to 127 (rarely used)

char [16 bits]: O to 65,535 (e.g. ‘a’, ‘B’, ‘$’, ‘7")
short [16 bits]: -32,768 to 32,767 (rarely used)

int [32 bits]: -2,147,483,648 to 2,147,483,647
long [64 bits]: -9.2 x 10'8 to 9.2 x 10'8 (approx)
float [32 bits]: -1.4 x 104> to 3.4 x 1038 (approx)
double [64 bits]: -4.9 x 103?24 to 1.8 x 10398 (apx)

Operators

Arithmetic (+ - * / %)

Relational (< <= > >=)

Equality (== I=)

Logical (&& | |)

Bitwise (<< >> >>> & N |)
Assignment (= += -= *= /= etc.)
Others (2: ++ -- etc.)

Operator Precedence

Just like in math, certain operators execute before
others (A + B * C)

Refer to this table for precedence:

http://download.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://download.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Operator Associativity

What happens when multiple operators at the same
level of precedence exist in sequence in an
expression is defined by associativity

Operators either “associate” left-to-right or right-
to-left; most associate left-to-right

Operator Associativity
N
110+ 20+3%4%5-30
210420+ 12%5-30
710 + 20 + 60 - 30
130 + 60 - 30
1 90 - 30
1 60

Operator Associativity

varl = var2 = var3 = 0;

varl = var2 = 0;

varl = O;

O; lltheSame

The equality operators associate right-to-left

Not only does the equality operator assign a value
to the variable, it returns the value for subsequent
expressions

Flow Control Statements

Decision
if-else

switch (implemented in PL's as a convenience)
lteration
for (counted loop)

while (top-tested loop)
do-while (bottom-tested loop)

Decision Statements
B

1 if-else statements
if(x > 10)
doSomething () ;

if(x > 10) {
doSomething () ;

if(x > 10) {
doSomething () ;
doSomethingElse () ;

Decision Statements

if-else statements

if(x > 10)
doSomething () ;
doSomethingElse () ;

No-no! Don’t confuse yourself — if you leave off the
braces only the first statement will be in the if and
the second statement will always be executed no
matter what

Decision Statements

1 if-else statements

if(x > 10) {
doSomething () ;

} else {
doSomethingElse () ;

if(x > 10) {
doSomethinglO () ;
} else if(x > 5) {
doSomething5 () ;
} else {
doSomethingElse(); // Executed when x <= 5

Decision Statements
B

1 switch statements (used only with primitives)
switch (myInt) ({
case 1l: doOne(); break;
case 2: doTwo (); break;
default: doOtherwise(); break;

}
// Used in place of this:

1f(myInt == 1) {
doOne () ;

} else 1f (myInt == 2) {
doTwo () ;

} else {

doOtherwise () ;

}

lteration

for loops

When you know exactly how many times you want some
piece of code to execute

for(initialization; condition; inc/dec) {
// loop body

lteration
N

for(int e = 1; e <= 10; e++)

sum += &;

for(int h = 100, h >= 0; h--) {
System.out.println ("height = " + h);

}

int count = 0;

for (double d = -2.3; d <= 293.48; d += 5.66) {
count++;

System.out.println(d + " " + count);

