
CS251L

2010.8.30 | Derek Trumbo | UNM

REVIEW

Arrays

 Example of array thought process in Eclipse

Arrays

 Multi-dimensional arrays are also supported by

most PL’s

 2-dimensional arrays are just like a matrix (monthly

accident counts for past decade, 0 == 2000):

int[][] accCount = new int[10][12];

accCount[0][0] = 3;

System.out.println(accCount[3][4]);

Arrays

 We can also provide the contents of an array when

we declare it – but don’t provide size information

int[][] multi = new int[][]

{{1, 2, 3}, {4, 5, 6}};

int asteriskCell = multi[1][2];

1 2 3

4 5 6*1

0

Row

Strings

 Strings in Java are not primitives

 Strings are fully-fledged objects that encapsulate

an array of characters

 Java uses “string pooling” to minimize duplication of

String objects in memory

 String objects are immutable

 Immutable objects are those objects whose internal

state does not change after that object is initially

created

Strings

 Just as == identifies if two primitive data types

have the same value, the == when applied to two

object references identifies if the references point

to the exact same object

 However, when comparing strings in Java, we rarely

care if two strings are the “same object” but rather

care more if the two strings contain the same

characters

Strings

 String s1 = "Neo"; String s2 = s1;

 s1 == s2 is true, s1.equals(s2) is true

“Neo”

s1 s2

Application

Memory

Strings

 String s1 = "Neo"; String s2 = new String("Neo");

 s1 == s2 is false, s1.equals(s2) is true

“Neo”

s1 s2

Application

Memory

“Neo”

Strings

 A method, equals(), in the String class performs this

comparison for you

String s1 = "ABC";

String s2 = "abc";

boolean same = s1.equals(s2);

boolean sameIC = s1.equalsIgnoreCase(s2);

Strings

 Become familiar with the Java API for the String

class:

 http://download.oracle.com/javase/6/docs/api/java/

lang/String.html

 Some useful methods are:

 charAt, endsWith, equals, equalsIgnoreCase, indexOf,

lastIndexOf, length, startsWith, substring, toLowerCase,

toUpperCase, trim

http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Strings

 Strings in Java get some royal treatment – the

concatenation operator (“+”) made special for them

 At the same level of precedence as the regular

arithmetic + operator, this operator combines a

String object and another primitive data type or

object into a larger String object

String day = "Monday";

int date = 3;

double temp = 89.4;

String msg = day + "/" + date + ": T=" + temp;

System.out.println(msg);

Methods

 The code in useful programs can always be divided

into areas of responsibility

 Most generic term for these are “procedures”

 In C/C++ these areas are called “functions” when

they don’t belong to a class, and those within classes

are called “member functions” (since they are

members of the class)

 In Java, we call these areas of responsibility

“methods” – and they always exist within some class

Methods

 Methods exist to decompose the problem into

smaller units of work for many reasons:

 Readability

 Stability (debug-ability)

 Code reuse (maintainability)

Methods

 Every method in Java exists within some class

 Methods have these parts:

 Access modifier (public, protected, private, package)

Optional static keyword

 Return type (any primitive data type or class reference)

Method name (in lower-camel case, e.g. “setTheThing”)

 Parameter list (zero or more, comma-delimited)

 Exception list (if the method declares that it throws ex.)

Method body (one or more lines of Java in {})

Methods

 Before you learn about object oriented

programming, many methods you write in your apps

may be “static”.

 This allows the method to execute without first

having an instance of the class that’s in existence

(more will be covered on this later on in course)

Methods

public class MyClass {

public static void main(String[] args) {

aaa();

}

public static void aaa() {

bbb();

}

public static void bbb() {

System.out.println("Hello World");

}

}

Methods

public class MyClass {

public static void main(String[] args) {

aaa();

}

public static void aaa() {

int result = bbb();

System.out.println("bbb = " + result);

}

public static int bbb() {

return 42;

}

}

Methods

public class MyClass {

public static void main(String[] args) {

aaa(5);

}

public static void aaa(int param) {

bbb("Saturn", param * 2.5);

}

public static void bbb(String a, double b) {

System.out.println(a + b);

}

}

Variables & Literals

 Variables are storage locations you can declare in

code, whose values can change over time, and

which are referenced by a name of your choosing

 Literals are those constant values of any primitive

data type (and strings) that are placed directly into

the code

Variables & Literals

public class MyClass {

public static void main(String[] args) {

double value = 40.05 * 2003.44 *

2003.44 / 78;

String msg = "Value is " + value + "!";

System.out.println(msg);

}

}

Variables & Literals

public class MyClass {

public static void main(String[] args) {

double value = 40.05 * 2003.44 *

2003.44 / 78;

String msg = "Value is " + value + "!";

System.out.println(msg);

}

}

Variables – both declarations and uses

Variables & Literals

public class MyClass {

public static void main(String[] args) {

double value = 40.05 * 2003.44 *

2003.44 / 78;

String msg = "Value is " + value + "!";

System.out.println(msg);

}

}

Literals – primitives and strings

Variables & Literals

public class MyClass {

public static void main(String[] args) {

double mass = 40.05;

double velocity = 2003.44;

int radius = 78;

double centripetalForce = mass *

Math.pow(velocity, 2) / radius;

String msg = "Centripetal Force: " +

centripetalForce;

System.out.println(msg);

}

}

Variables & Literals

public class MyClass {

public static void main(String[] args) {

double mass = 40.05;

double velocity = 2003.44;

int radius = 78;

double centripetalForce = mass *

Math.pow(velocity, 2) / radius;

String msg = "Centripetal Force: " +

centripetalForce;

System.out.println(msg);

}

}
Variables – both declarations and uses

Variables & Literals

public class MyClass {

public static void main(String[] args) {

double mass = 40.05;

double velocity = 2003.44;

int radius = 78;

double centripetalForce = mass *

Math.pow(velocity, 2) / radius;

String msg = "Centripetal Force: " +

centripetalForce;

System.out.println(msg);

}

}
Literals – primitives and strings

