
CS251L

2010.8.30 | Derek Trumbo | UNM

REVIEW

Arrays

 Example of array thought process in Eclipse

Arrays

 Multi-dimensional arrays are also supported by

most PL’s

 2-dimensional arrays are just like a matrix (monthly

accident counts for past decade, 0 == 2000):

int[][] accCount = new int[10][12];

accCount[0][0] = 3;

System.out.println(accCount[3][4]);

Arrays

 We can also provide the contents of an array when

we declare it – but don’t provide size information

int[][] multi = new int[][]

{{1, 2, 3}, {4, 5, 6}};

int asteriskCell = multi[1][2];

1 2 3

4 5 6*1

0

Row

Strings

 Strings in Java are not primitives

 Strings are fully-fledged objects that encapsulate

an array of characters

 Java uses “string pooling” to minimize duplication of

String objects in memory

 String objects are immutable

 Immutable objects are those objects whose internal

state does not change after that object is initially

created

Strings

 Just as == identifies if two primitive data types

have the same value, the == when applied to two

object references identifies if the references point

to the exact same object

 However, when comparing strings in Java, we rarely

care if two strings are the “same object” but rather

care more if the two strings contain the same

characters

Strings

 String s1 = "Neo"; String s2 = s1;

 s1 == s2 is true, s1.equals(s2) is true

“Neo”

s1 s2

Application

Memory

Strings

 String s1 = "Neo"; String s2 = new String("Neo");

 s1 == s2 is false, s1.equals(s2) is true

“Neo”

s1 s2

Application

Memory

“Neo”

Strings

 A method, equals(), in the String class performs this

comparison for you

String s1 = "ABC";

String s2 = "abc";

boolean same = s1.equals(s2);

boolean sameIC = s1.equalsIgnoreCase(s2);

Strings

 Become familiar with the Java API for the String

class:

 http://download.oracle.com/javase/6/docs/api/java/

lang/String.html

 Some useful methods are:

 charAt, endsWith, equals, equalsIgnoreCase, indexOf,

lastIndexOf, length, startsWith, substring, toLowerCase,

toUpperCase, trim

http://download.oracle.com/javase/6/docs/api/java/lang/String.html
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Strings

 Strings in Java get some royal treatment – the

concatenation operator (“+”) made special for them

 At the same level of precedence as the regular

arithmetic + operator, this operator combines a

String object and another primitive data type or

object into a larger String object

String day = "Monday";

int date = 3;

double temp = 89.4;

String msg = day + "/" + date + ": T=" + temp;

System.out.println(msg);

Methods

 The code in useful programs can always be divided

into areas of responsibility

 Most generic term for these are “procedures”

 In C/C++ these areas are called “functions” when

they don’t belong to a class, and those within classes

are called “member functions” (since they are

members of the class)

 In Java, we call these areas of responsibility

“methods” – and they always exist within some class

Methods

 Methods exist to decompose the problem into

smaller units of work for many reasons:

 Readability

 Stability (debug-ability)

 Code reuse (maintainability)

Methods

 Every method in Java exists within some class

 Methods have these parts:

 Access modifier (public, protected, private, package)

Optional static keyword

 Return type (any primitive data type or class reference)

Method name (in lower-camel case, e.g. “setTheThing”)

 Parameter list (zero or more, comma-delimited)

 Exception list (if the method declares that it throws ex.)

Method body (one or more lines of Java in {})

Methods

 Before you learn about object oriented

programming, many methods you write in your apps

may be “static”.

 This allows the method to execute without first

having an instance of the class that’s in existence

(more will be covered on this later on in course)

Methods

public class MyClass {

public static void main(String[] args) {

aaa();

}

public static void aaa() {

bbb();

}

public static void bbb() {

System.out.println("Hello World");

}

}

Methods

public class MyClass {

public static void main(String[] args) {

aaa();

}

public static void aaa() {

int result = bbb();

System.out.println("bbb = " + result);

}

public static int bbb() {

return 42;

}

}

Methods

public class MyClass {

public static void main(String[] args) {

aaa(5);

}

public static void aaa(int param) {

bbb("Saturn", param * 2.5);

}

public static void bbb(String a, double b) {

System.out.println(a + b);

}

}

Variables & Literals

 Variables are storage locations you can declare in

code, whose values can change over time, and

which are referenced by a name of your choosing

 Literals are those constant values of any primitive

data type (and strings) that are placed directly into

the code

Variables & Literals

public class MyClass {

public static void main(String[] args) {

double value = 40.05 * 2003.44 *

2003.44 / 78;

String msg = "Value is " + value + "!";

System.out.println(msg);

}

}

Variables & Literals

public class MyClass {

public static void main(String[] args) {

double value = 40.05 * 2003.44 *

2003.44 / 78;

String msg = "Value is " + value + "!";

System.out.println(msg);

}

}

Variables – both declarations and uses

Variables & Literals

public class MyClass {

public static void main(String[] args) {

double value = 40.05 * 2003.44 *

2003.44 / 78;

String msg = "Value is " + value + "!";

System.out.println(msg);

}

}

Literals – primitives and strings

Variables & Literals

public class MyClass {

public static void main(String[] args) {

double mass = 40.05;

double velocity = 2003.44;

int radius = 78;

double centripetalForce = mass *

Math.pow(velocity, 2) / radius;

String msg = "Centripetal Force: " +

centripetalForce;

System.out.println(msg);

}

}

Variables & Literals

public class MyClass {

public static void main(String[] args) {

double mass = 40.05;

double velocity = 2003.44;

int radius = 78;

double centripetalForce = mass *

Math.pow(velocity, 2) / radius;

String msg = "Centripetal Force: " +

centripetalForce;

System.out.println(msg);

}

}
Variables – both declarations and uses

Variables & Literals

public class MyClass {

public static void main(String[] args) {

double mass = 40.05;

double velocity = 2003.44;

int radius = 78;

double centripetalForce = mass *

Math.pow(velocity, 2) / radius;

String msg = "Centripetal Force: " +

centripetalForce;

System.out.println(msg);

}

}
Literals – primitives and strings

