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Abstract

A key characteristic for ultra-large scale (ULS) software-
intensive systems is the need to adapt at run time in re-
sponse to changing environmental conditions. Given the
scale, complexity, and heterogeneity of ULS elements, in-
novative, but rigorous software engineering techniques are
needed to address the development and the evolution of
these systems. The developer of self-adaptive ULS systems
must anticipate how and when the software will need to
adapt in the future, codify this behavior in decision-making
components to govern the adaptation, and ensure that sys-
tem integrity is not compromised during adaptations. We
contend that the full potential of dynamically adaptive soft-
ware systems cannot be realized without environments that
enable the developer to actively explore the “adaptation
space” of the system during the early stages of design. We
propose an approach to this problem that leverages and
extends digital evolution techniques. By mapping models
of adaptive software programs into digital organisms and
studying traces of their evolution, the developer can gain
critical insight into software decision making, software as-
surance, and the software infrastructure needed to support
desired adaptations.

1 Introduction

Computing technology now affects nearly every dimen-
sion of modern society: managing critical infrastructure
such as power grids and telecommunication networks; sup-
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porting electronic commerce and medical information sys-
tems; and controlling the operation of aircraft and automo-
biles. The pervasiveness of computing technology, coupled
with its rapidly increasing complexity, gives rise to the need
for computer systems that are able to adapt to changing
conditions, compensate for hardware and software failures,
fend off attacks, and optimize performance, all with min-
imal human intervention. Autonomic computing [1] refers
to systems capable of such self-management. This tech-
nology is especially important as computing systems in-
teract increasingly with the physical world. For example,
an increasing number of distributed applications involve
data gleaned through wireless sensors that monitor and re-
port various aspects of the physical environment. Since
many of these applications involve public safety and na-
tional defense, enhancing their ability to detect and respond
to changing conditions, including and potential threats, is
paramount.

In the past decade, extensive research has been con-
ducted on many aspects of self-adaptive software sys-
tems. Examples include adaptive software mechanisms [2],
design of software to facilitate later modifications [3];
software-architecture techniques for supporting dynamic
adaptation [4]; systems that distill data streams and dis-
tribute processing tasks to support resource-limited de-
vices [5]; adaptable and extensible operating systems [6];
and dynamic recomposition within the network infrastruc-
ture itself [7]. This research has greatly improved our un-
derstanding of adaptive software and several key supporting
concepts, including computational reflection, separation of
concerns, component-based design, and transparent inter-
ception of program flow.

Despite these advances, however, designing an adaptive
software system remains a very challenging task, due to the
dynamic nature of adaptive software and uncertainty in the
execution environment. We speculate that this problem is
due in part to the fact that adaptive software is designed
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and implemented using tools and environments intended
for the development of non-adaptive software. We contend
that the full potential of dynamically adaptive software sys-
tems cannot be realized without fundamental advances in
the corresponding development environments, which must
enable developers to explicitly address those features that
distinguish adaptive systems from non-adaptive systems.
These issues include anticipating how the software may
need to adapt in the future, ensuring that system integrity is
not compromised by adaptation, and constructing decision-
making software to govern the adaptation. In the same
manner that the introduction of other development tools
(e.g., compilers, code generators, simulators, programming
paradigms and languages) have improved software develop-
ment in the past, so do we envision that the proper tools can
lead to a new paradigm that more effectively supports the
development of adaptive software.

To design self-adaptive computational systems, one can
take inspiration from nature. Living organisms have an
amazing ability to adapt to a changing environment, both
in the short term (phenotypic plasticity) and in the longer
term (Darwinian evolution). Indeed, most complex organ-
isms exhibit traits that seem desirable in self-adaptive soft-
ware: system monitoring (senses, awareness); short-term
changes in priorities (stress reactions, sleep); system re-
configuration (muscle growth, calluses); self repair (tis-
sue healing); intrusion detection/elimination (immune sys-
tems); and maintaining state through transitions (gradual
acclimation to a new environment). In the past few years,
several approaches to adaptive software design have sought
to mimic the behavior of natural organisms (biomimetics),
for example, [8]. However, natural organisms were pro-
duced through an evolutionary design process over millions
of years. While biomimetics attempts to imitate the results
of this process, it fails to account for the many factors that
led to the adaptive behavior.

We propose a fundamentally different approach based
on digital evolution [9, 10], where a population of self-
replicating computer programs exists in a user-defined com-
putational environment and is subject to mutations and nat-
ural selection. These “digital organisms” are provided with
limited resources that they must carefully balance if they are
to survive. Over time, these organisms will evolve to opti-
mize their usage and thrive if they are able. Unlike mere nu-
merical simulations or other forms of evolutionary compu-
tation (such as genetic algorithms), digital organisms pos-
sess the ability to truly evolve; the evolution is open-ended,
often yielding unexpected solutions. No matter how well a
given organism can perform a specific task, whether or not it
self-replicates and moves into the next generation depends
on its environment and its interaction with other organisms,
not on an explicitly stated fitness function.

We are conducting preliminary investigations for a

project, ORCHID,1 that explores how digital evolution tech-
niques can be leveraged and extended to support the de-
sign of robust self-adaptive software. The project focuses
primarily on early development activities, namely require-
ments engineering and design, where we believe improve-
ments in the early development processes can have the most
profound effect on the quality and capabilities of future sys-
tems. Specifically, by mapping adaptive software systems
to digital organisms and observing their evolution, the de-
veloper is able to actively explore the “adaptation space” of
the system during the initial design. In this position paper,
we provide background on digital evolution, describe the
ways in which we believe digital evolution can be applied
to the development of adaptive systems, and discuss some
of the technical challenges that must be addressed to make
this approach viable.

2 Digital Evolution Background

Digital evolution platforms have been developed first and
foremost to provide a better understanding of evolution in
nature [11]. Studying digital organisms offers several ad-
vantages over studying natural systems. As John May-
nard Smith once noted,“So far, we have been able to study
only one evolving system and we cannot wait for interstel-
lar flight to provide us with a second. If we want to dis-
cover generalizations about evolving systems, we will have
to look at artificial ones.” Digital organisms enable scien-
tists to address questions that are impossible to study with
organic life forms, for example, explicitly disabling given
mutations and seeing how that constraint affects the popu-
lation.

However, unlike simulations of evolution, digital evolu-
tion is real. No matter how sophisticated an organism is
at performing a single task, its likelihood of moving into
the next generation depends on its interaction with the en-
vironment and other organisms, as well as its own ability
at self replication. There is no explicit fitness function as
in genetic algorithms; tasks only play a role in triggering
an organism’s environmental interactions. Like other forms
of evolutionary computation, digital organisms can be used
to design solutions to computational problems, where it is
difficult to write explicit programs that produce the desired
behavior [11]. Thus, digital organisms enable biological
concepts to be used to study problems outside of biology,
just as principles of physics and mathematics are often used
in biology.

Currently, the most widely used digital evolution plat-
form is AVIDA [9], developed by Ofria and colleagues.

1The project name was selected due to the evolutionary and adaptive
nature of orchids, which are dated at being more than 90,000,000 years old,
with 20,000 to 30,000 species, living on all continents except Antarctica.
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Each Avida organism comprises a circular list of assembly-
like instructions (its genome) and a virtual CPU, which exe-
cutes those instructions. Residing in a common virtual envi-
ronment, organisms may communicate with each other via
the exchange of messages, resources may be produced and
consumed, and organisms may sense and change properties
of the environment. At any point in time the population
of digital organisms may contain many different genomes.
Some may be closely related (e.g., parent and offspring),
while others may be related only through a distant ances-
tor. Each population starts with a single organism that is
only capable of replication, and different genomes are pro-
duced through random mutations that occur during replica-
tion. Organisms are rewarded with virtual CPU cycles for
performing specified tasks; selective pressure thereby pro-
duces organisms that exhibit beneficial behaviors and other
traits. Tasks are generally defined in terms of externally
visible behaviors of the organisms (their phenotype), rather
than in terms of the specific instructions that must be exe-
cuted by the digital organism’s CPU. This approach allows
maximum flexibility in the evolution of a solution for a par-
ticular task. Tracing the evolution of the AVIDA organisms
can provide insight into a variety of problems, often reveal-
ing strikingly elegant solutions that the user did not expect.

Over the past several years, AVIDA has been used to con-
duct pioneering research in the evolution of biocomplexity.
Specific studies address the evolutionary origin of complex
traits [11], the evolutionary design of modularity [12, 13]
and robustness [14, 15]. the evolution of multiple, interact-
ing programs [10, 16, 17], the design of evolvable program-
ming languages [18], and analysis techniques to breakdown
the information contained within evolved code [19–21]. In-
deed, the generality of AVIDA makes it an ideal platform to
study questions associated not only with biology, but also
with the application of biological concepts to software de-
sign.

3 Application to Software Development

Digital evolution can be used to support the design of ro-
bust self-adaptive systems in at least two ways. First, evo-
lution can be used to discover robust communication proto-
cols and strategies. In sensor networks, for example, com-
munication operations typically require cooperation among
many nodes in the network. Complex operations include
well-studied issues in distributed computing, such as multi-
casting, gathering sensed data, leader selection, and detect-
ing and responding to events of interest. Many traditional
algorithms for solving these problems either perform poorly
or are brittle when deployed in dynamic environments. On
the other hand, digital evolution provides a means to explore
a much larger solution space, potentially discovering algo-
rithms that are more likely to remain mission-effective even

under extremely harsh conditions. Our preliminary studies
have demonstrated that AVIDA populations can evolve the
ability to elect leaders [22] and forward data to a collec-
tion point [23], despite continuous turnover in the popula-
tion. Algorithms produced in this manner can be codified
and executed on real hardware.

The second way in which digital evolution can be used to
help design self-adaptive systems is to use evolution of pop-
ulations to help explore design of the software itself, in par-
ticular, models of its behavior in response to changing con-
ditions. The ORCHID project is primarily about this second
method, but also uses results of the first method to design
adaptive software that can be deployed and tested in real-
world environments. The software development tools and
techniques produced by the ORCHID project will enable the
designer to model software systems as digital organisms,
observe their evolution under various conditions, and use
the results to refine and improve the models. In related stud-
ies, McKinley, Cheng and colleagues have investigated sev-
eral aspects of adaptive software design, In particular, the
RAPIDware project [2] addresses high-assurance adaptive
software, including programming language support [24,25],
middleware support [26, 27], cross-layer cooperation dis-
tributed applications [28, 29], and techniques to maintain
the state of the the system across adaptations [30, 31].

We argue that digital evolution can be used in concert
with the above methods, by enabling the developer to ex-
plore, early in the design process, three aspects of self-
adaptive systems that are particularly challenging using tra-
ditional software development tools: the decision making
process for adaptation, preserving system integrity during
reconfiguration, and designing the software infrastructure
needed to realize adaptive behavior. Each area is discussed
in turn.

Decision Making. In confronting a dynamic environ-
ment, a system may decide to adapt its behavior, and even
modify its structure, to better fit the current environment.
Indeed, many systems must make decisions in real time to
prevent damage or loss of service. Decision makers use in-
put gleaned from both the physical and the virtual environ-
ment in which they execute. A decision maker may have
access to hundreds or thousands of sensor readings; the sys-
tem must be able to capture the relative importance of differ-
ent inputs, learn from past experience, and remember effec-
tive responses to the sensed environment. Many different
techniques have been proposed to realize decision makers
for adaptable software: rule-based methods, control theory
models, resource optimization, emergent behavior, machine
learning, and others.

Since the digital organisms have no pre-conceived no-
tions about what the most optimal adaptive state will be,
they will explore without regard for precedent, focusing

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00  © 2007



only on what produces the best results for this specific case.
In studies using AVIDA, digital organisms have shown a
strong ability to produce novel behavior, which is often re-
markably complex. We believe that applying them to sys-
tems such as these will enable us to find significant and un-
expected adaptive pathways. Moreover, these studies have
shown that digital organisms do have a remarkable ability
to develop phenotypic plasticity in response to environmen-
tal inputs. In biology, this term refers to organisms that
are genetically identical, but develop differently depend-
ing on what the environmental conditions are where they
are living. We expect that similar adaptations during an or-
ganism’s lifetime will be apparent in the digital organisms.
One possible result of this study is the development of a hy-
brid approach to decision-making that subsumes rule-based,
statistical, machine-learning, and control theory techniques.
Such an approach might provide high-level mutations in the
digital organisms that give the tools access to tools in these
other areas. Those that utilize them most successfully will
outcompete the rest of their population and be prime candi-
dates for implementation as part of an adaptive system.

Safe Adaptation and State Management. Safe adapta-
tion refers to preserving the integrity or consistency of the
system as it adapts [31]. In many cases, recomposition of
algorithmic or structural components at run-time requires
the transfer of nontransient state information between an
old component and its replacement. While the state cap-
ture problem has been addressed in other contexts, such as
checkpointing, process or thread migration, mobile agents,
the methods employed there generally are not directly appli-
cable because they either incur too much overhead or do not
support state transfer between different implementations of
a component. Rather, dynamic software recomposition in-
volves state transfer as it relates to collateral change, de-
fined as the set of recompositions that must be applied to an
application atomically for correct execution [30].

Digital organisms have demonstrated the ability to thrive
in exceedingly complex environments with many different
resources that interact with one another [11]. We have also
witnessed their ability to group organismal traits together in
changing environments to optimize their ability to survive.
By a similar notion, we expect that these populations should
inherently be able to handle large factor sets that must be
dealt with atomically. The execution of many experiments
will help the developer to analyze the particular choices of
factors that the AVIDA organisms bundle together during
evolution. Some of these connections occur by chance, but
those that appear more frequently will likely have been mo-
tivated by selective pressure. It is these groupings that the
developer must pay special attention to, so as to determine
if their separation causes the system integrity to be compro-
mised during adaptation.

Adaptive Infrastructure. The final issue we address in
the design of adaptive systems is constraints on the degree
to which the system is able to change its own behavior. As
discussed by Kiczales [32] for meta-level interfaces in re-
flective systems, preemption occurs when the designer of
an adaptive system makes a decision in the implementa-
tion that prevents a programmer (or another software entity)
from using a feature of the system in a way that would oth-
erwise seem natural. That is to say, decisions made when
the framework is implemented preemptively restrict how
the system can be adapted. Conversely, a completely open
implementation implies that an application can be recom-
posed entirely at run-time. Hence, a major challenge for the
designer of a self-adaptive system is to achieve the proper
balance between preemption and openness in the system.
This balance will be codified in a adaptation infrastructure,
which should be flexible enough to support types of adap-
tation required of the system, yet should prevent a system
from transforming itself in ways that are not desirable or
threaten basic functionality of the system.

In this part of our study, we are investigating how digi-
tal evolution technologies can be leveraged to help the de-
veloper explore these issues during the early stages of de-
sign. Specifically, a candidate software design (architec-
ture) can be represented as a digital organism. In contrast to
the requirements modeling described above, this part of the
project will focus on design evolution. As such, the digital
organisms in this phase represent designs, and their envi-
ronments are configured using the requirements for the col-
lection of target systems in addition to the execution envi-
ronment for the system. Preemption and openness are cod-
ified as mutations to the design organism, where tradeoffs
will need to be made to best suit the environment of the tar-
get system requirements (behavior). Other constraints for
the digital evolution process include the decision-making
information and the assurance techniques. Our objective
is to obtain one or more design organisms that optimally
satisfy the set of target systems in the context of the rele-
vant decision-making techniques and assurance constraints,
while minimizing the required openness of the system.

4 Technical Challenges

While the use of digital evolution promises new capa-
bilities to the designer of an adaptive system, we are just
beginning our study of this approach. Several key technical
issues need to be addressed in the full ORCHID project.

Requirements Engineering for Adaptive Systems.
Most of the work on software engineering of adaptive
systems has focused on “downstream” development is-
sues, such as adaptation mechanisms [33], programming
language support for adaptation, and software architecture
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support [34]. Relatively less research has addressed early
development activities, such as requirements engineering
(RE) and specification techniques for adaptive systems.
There has been some preliminary work on specifying and
verifying adaptive software [35–37] and on run-time moni-
toring of requirements conformance [38–40]. In addition,
much of the work on personalized [41] and customized [42]
software – at least with respect to eliciting, modeling,
and reasoning about requirements variations – can also
be applied to adaptive systems. To significantly improve
assurance in dynamically adaptive software, more rigorous
and systematic techniques for specifying, analyzing, and
refining requirements for adaptive systems are needed.
Berry et al [43] recently proposed a four-level model to
represent the different types of RE taking place for and in
dynamically adaptive systems. A key problem illuminated
by this four-level model is the need for innovative tech-
niques to identify the requirements and the corresponding
behavioral models for target systems that can be adopted
as part of the adaptation process. These target systems
should represent the appropriate system behavior to handle
different environmental conditions, including adverse
conditions and possibly variations of these conditions.

Mapping Software Models to Digital Organisms. To
address this issue, we are using digital evolution to create
models for adaptive systems that might not be otherwise
be discovered by human developers. We are investigat-
ing two main approaches. The first approach is to evolve
AVIDA organisms that generate state diagrams during their
execution, requiring minimal modifications to AVIDA. We
demonstrated the feasibility of this approach in a prelimi-
nary study [44]. Specifically, we showed that digital evolu-
tion is capable of creating state diagrams describing wire-
less sensor systems. We were able to specify what prop-
erties the state diagram should satisfy, evolve organisms to
generate diagrams, and use a model checker to verify that
the diagram evolved by an organism adhere to the property.

In the second approach, a UML state diagram itself is
encoded as the digital organism that evolves in response
to changing environmental conditions. Using the state di-
agram as the digital organism is potentially more powerful
than the method described above, however, a number of re-
search challenges need to be addressed. First, mutation op-
erators for a state diagram must be defined. These would
likely include the addition and removal of states and tran-
sitions, but a more challenging aspect is formulation of the
guards and actions. Guards and actions have a vocabulary
that is system-dependent, so the evolving diagram must si-
multaneously evolve this vocabulary. This second approach
has the distinct advantage that the of being immediately use-
ful without any additional translation, and can potentially
be set up with a more meaningful set of mutation operators

where a single mutation would be able to add, remove, or
duplicate states, or similarly modify transitions. Our plan is
to use the results of our first approach to gain insight into
how to introduce the mutations to guide a more optimized
evolution of the models. For both cases, fitness criteria
(codified as AVIDA tasks) will be defined to constrain the
evolution process. Tasks can be defined to check whether
diagrams satisfy system invariants; those that do will be re-
warded and therefore be more likely to survive.

Representing Functional Requirements and Con-
straints. No matter which organism representation is
used, the execution environment for the organisms must
enforce all of the functional requirements and constraints
of the system. Functional requirements are associated
with resources that are placed in the environment for the
organisms. Barely meeting a requirement will provide the
organism with minimum of that specific resource needed
for replication—an organism can only successfully repli-
cate when it has met all of these requirements. Surpassing
the minimum requirements will mean that the organism
receives additional resources and will therefore be able
to replicate more rapidly and, in turn, have a competitive
advantage. Those requirements that are most important
to optimize will be associated with the most valuable
resources.

Constraints, on the other hand, can be thought of as
“Laws of Physics.” Example constraints include avoid-
ing known feature interactions, dependencies among system
requirements, and limitations on computational resources.
We are exploring the most effective means to codify these
constraints. Specifically, we need to assess the severity of
these constraints to determine whether we want to discour-
age, hurt, or even terminate an organism when it violates
one.

Mobile Computing Software Repositories. The initial
target application domain of the ORCHID project is adap-
tive software for network-centric wireless applications, in-
cluding mobile computing environments and wireless sen-
sor networks. In order to facilitate the adaptation space ex-
ploration, we are leveraging our previous experience and
that of others working in the area of adaptive software for
mobile computing to identify commonly occurring patterns
for requirements and design models. In particular, we need
to express these patterns in terms of UML state diagrams for
requirements and UML class diagrams for designs. Our pre-
vious experience with identifying requirements-level pat-
terns for embedded systems [45] suggests that for a given
domain, it is possible to identify recurring patterns for both
requirements and designs. We are specifically looking for
patterns in the same spirit as the design patterns by Gamma,
where in addition to diagram templates, there are fields that
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describe the problem being addressed by a pattern, the con-
sequences of using a pattern, constraints applicable to the
pattern, example uses, dependencies among patterns, and
suggested refinements to patterns for the next stage of de-
velopment.

5 Summary

In summary, we propose that the field of digital evolu-
tion can be leveraged to improve the design of self-adaptive
software for ULS systems. Specifically, development tools
that model adaptive software as digital organisms, will em-
power the designers of self-adaptive systems with the abil-
ity to study the expected behavior of such systems, and de-
tect potential problems, in ways not currently possible. The
promise is that these techniques will yield software systems
that are more robust and rigorous than those produced by
existing methods.

Further Information. More information on MSU’s
Digital Evolution Laboratory and the AVIDA platform are
available at http://devolab.cse.msu.edu. Additional infor-
mation on the Software Engineering and Network Systems
Laboratory and the RAPIDware project can be found at
http://www.cse.msu.edu/sens and http://www.cse.msu.edu,
respectively.
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