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Abstract—The clonal selection principle is used to explain the
basic features of an adaptive immune response to an antigenic
stimulus. It establishes the idea that only those cells that recognize
the antigens (Ag’s) are selected to proliferate. The selected cells
are subject to an affinity maturation process, which improves their
affinity to the selective Ag’s. This paper proposes a computational
implementation of the clonal selection principle that explicitly
takes into account the affinity maturation of the immune response.
The general algorithm, named CLONALG, is derived primarily
to perform machine-learning and pattern-recognition tasks and
then it is adapted to solve optimization problems, emphasizing
multimodal and combinatorial optimization. Two versions of the
algorithm are derived, their computational cost per iteration is
presented, and a sensitivity analysis in relation to the user-defined
parameters is given. CLONALG is also contrasted with evolu-
tionary algorithms. Several benchmark problems are considered
to evaluate the performance of CLONALG and it is also compared
to a niching method for multimodal function optimization.

Index Terms—Clonal selection principle, evolutionary algo-
rithms, optimization, pattern recognition.

I. INTRODUCTION

OVER the last few years, there has been an ever-increasing
interest in the area of artificial immune systems (AIS)

and their applications [1]–[6]. AIS uses ideas gleaned from im-
munology in order to develop adaptive systems capable of per-
forming a wide range of tasks in various areas of research.
In this paper, we will review the clonal selection concept, to-

gether with the affinitymaturation process, and demonstrate that
these biological principles can lead to the development of useful
computational tools. The algorithm to be presented focuses on
a systemic view of the immune system and does not take into
account cell–cell interactions. It is not our concern to model ex-
actly any biological phenomenon, but to show that some basic
immune principles can help us to not only better understand the
immune system itself, but also to solve complex engineering
tasks.
Initially, the algorithm is proposed and evaluated to carry

out machine-learning and pattern-recognition tasks and then
adapted to solve optimization problems. No distinction is made
between a B cell and its receptor, known as an antibody (Ab),
so that every element of our artificial immune system will be
generically called an Ab.
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First, we apply the clonal selection algorithm to a binary char-
acter recognition problem in order to verify its ability to perform
tasks such as learning and memory acquisition. Then we show
that the same algorithm, with few modifications, is suitable for
solving multimodal and combinatorial optimization tasks. This
work also contains a discussion relating the proposed clonal se-
lection algorithm, named CLONALG, with well-known evolu-
tionary algorithms (EAs).
Thepaper is organized as follows. Section II reviews the clonal

selectionprincipleandtheaffinitymaturationprocessfromanim-
munological standpoint. Section III reviews the basics of EAs to
perform multimodal search and Section IV characterizes clonal
selection as an evolutionary process. Section V briefly discusses
a formalism to model immune cells, molecules, and their inter-
actions with antigens (Ag’s). Section VI introduces and evalu-
ates the twoversionsof theproposedalgorithm,whileSectionVII
contains the sensitivity analysis of the algorithm in relation to the
user-definedparameters. SectionVIII discusses themainproper-
tiesof thealgorithmin theoreticalandempirical terms.SectionIX
concludes the paper.

II. CLONAL SELECTION THEORY

Anymolecule that can be recognized by the adaptive immune
system is known as an Ag. When an animal is exposed to an Ag,
somesubpopulationof itsbone-marrow-derivedcells (Blympho-
cytes) responds by producing Ab’s. Ab’s are molecules attached
primarily to the surface of B cells whose aim is to recognize and
bind to Ag’s. Each B cell secretes a single type of Ab, which is
relatively specific for theAg. By binding to theseAb’s andwith a
second signal from accessory cells, such as the T-helper cell, the
Agstimulates theBcell toproliferate (divide)andmature into ter-
minal (nondividing) Ab secreting cells, called plasma cells. The
process of cell division (mitosis) generates a clone, i.e., a cell or
set of cells that are the progenies of a single cell.
B cells, in addition to proliferating and differentiating into

plasma cells, can differentiate into long-lived B memory cells.
Memory cells circulate through the blood, lymph, and tissues
and, when exposed to a second antigenic stimulus, commence to
differentiate into plasma cells capable of producing high-affinity
Ab’s, preselected for the specific Ag that had stimulated the
primary response. Fig. 1 depicts the clonal selection principle.
The main features of the clonal selection theory [7], [8] that

will be explored in this paper are:
1) proliferation and differentiation on stimulation of cells
with Ag’s;

2) generation of new random genetic changes, expressed
subsequently as diverse Ab patterns, by a form of accel-
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Fig. 1. Clonal selection principle.

erated somatic mutation (a process called affinity matu-
ration);

3) estimation of newly differentiated lymphocytes carrying
low-affinity antigenic receptors.

A. Reinforcement Learning and Immune Memory

Learning in the immune system involves raising the relative
population size and affinity of those lymphocytes that have
proven themselves to be valuable by having recognized a given
Ag. In our use of the clonal selection theory for the solution
of practical problems, we do not intend to maintain a large
number of candidate solutions, but to keep a small set of best
individuals. A clone will be created temporarily and those
progeny with low affinity will be discarded. The purpose is to
solve the problem using a minimal amount of resources. Hence,
we seek high-quality and parsimonious solutions.
In the normal course of the immune system evolution, an

organism would be expected to encounter a given Ag repeat-
edly during its lifetime. The initial exposure to an Ag that
stimulates an adaptive immune response is handled by a small
number of low-affinity B cells, each producing an Ab type of
different affinity. The effectiveness of the immune response to
secondary encounters is enhanced considerably by the presence
of memory cells associated with the first infection, capable of
producing high-affinity Ab’s just after subsequent encounters.
Rather than “starting from scratch” every time, such a strategy
ensures that both the speed and accuracy of the immune
response becomes successively higher after each infection.
This is an intrinsic scheme of a reinforcement learning strategy
[9], where the interaction with the environment gives rise to the
continuous improvement of the system capability to perform
a given task.
To illustrate the adaptive immune learning mechanism, con-

sider that an antigen is introduced at time zero and it finds

a few specific Ab’s within the animal (see Fig. 2). After a lag
phase, the Ab against antigen appears and its concentration
rises up to a certain level and then starts to decline (primary re-
sponse). Consider at this point the exposition to an antigen
not correlated with antigen . Then, no specific Ab is present
and the Ab response will be similar to that obtained in the case
of [10]. On the other hand, one important characteristic of
the immune memory is that it is associative: B cells adapted to a
certain type of antigen present a faster and more efficient
secondary response not only to , but also to any structurally
related antigen . This phenomenon is called immunological
cross reaction or cross-reactive response [11]–[15]. This asso-
ciative memory is contained in the process of vaccination and
is called generalization capability or simply generalization in
other artificial (computational) intelligence fields, like neural
networks [16].
Some characteristics of the associative memories are partic-

ularly interesting in the context of AIS:
1) the stored pattern is recovered through the presentation of
an incomplete or corrupted version of the pattern;

2) they are usually robust, not only to noise in the data, but
also to failure in the components of the memory.

By comparison with the primary response, the secondary re-
sponse is characterized by a shorter lag phase, a higher rate, and
longer synthesis of Ab’s with higher antigenic affinities (see the
affinity maturation section). Moreover, a dose of Ag substan-
tially lower than that required to initiate a primary response may
cause a secondary response.
Some authors [17], [18] have suggested that long-lived B

cells, which have responded to an antigenic previous exposure,
remain in a small, resting state, andwill play an important role in
secondary Ab responses. These memory cells are disconnected,
at least functionally, from the other cells, andmemory is a clonal
property, at least in the context of secondary responses, in which
the clone size of an Ag specific cell has increased. Others ar-
gued [14] that whether or not memory cells are truly resting
cells is a debatable issue and suggested that typical memory
cells are semi-activated cells engaged in low-grade responses
to persisting Ag’s.
It is important to remark that, under an engineering perspec-

tive, the cells with higher affinity must somehow be preserved
as high-quality candidate solutions and shall only be replaced
by improved candidates, based on statistical evidences. This is
the reason why in the first version of our model we maintain a
specific memory set as part of the whole repertoire.
As a summary, immune learning and memory are acquired

through [19]:
1) repeated exposure to an Ag;
2) affinity maturation of the receptor molecules (see Sec-
tion II-B);

3) low-grade chronic infection;
4) cross-reactivity.

B. Affinity Maturation

In a T-cell-dependent immune response, the repertoire of
Ag-activated B cells is diversified basically by two mecha-
nisms: 1) hypermutation and 2) receptor editing [20]–[23].
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Fig. 2. Primary, secondary, and cross-reactive immune responses. After an Ag has been seen once (primary response), subsequent encounters with the same Ag
or a related one (cross reaction) will lead to a faster and stronger response (secondary response).

Ab’s present in a memory response have, on average, a
higher affinity than those of the early primary response. This
phenomenon, which is restricted to T-cell-dependent responses,
is referred to as the maturation of the immune response. This
maturation requires the Ag-binding sites of the Ab molecules
to be structurally different from those present in the primary
response.
Random changes are introduced into the genes responsible

for the Ag–Ab interactions and occasionally one such change
will lead to an increase in the affinity of the Ab. These higher
affinity variants are then selected to enter the pool of memory
cells. Not only the repertoire is diversified through a hypermuta-
tion mechanism, but also mechanisms must exist such that rare
B cells with high affinity mutant receptors can be selected to
dominate the response. Those cells with low affinity or self-re-
active receptors must be efficiently eliminated, become anergic
(with no function), or be edited [20]–[22].
Recent results [20]–[22] suggest that the immune system

practices molecular selection of receptors in addition to clonal
selection of lymphocytes. Instead of the expected clonal
deletion of all self-reactive cells, occasionally, B lymphocytes
were found that had undergone receptor editing: these B cells
had deleted their low-affinity receptors and developed entirely
new ones through recombination [23].
Receptor editing offers the ability to escape from local op-

tima on an affinity landscape. Fig. 3 illustrates this idea by con-
sidering all possible Ag-binding sites depicted in the axis,
with the most similar ones adjacent to each other. The Ag–Ab
affinity is shown on the axis. If a particular Ab is se-
lected during a primary response, then point mutations allow the
immune system to explore local areas around by making
small steps toward an Ab with higher affinity, leading to a local
optima . Because mutations with lower affinity are lost,
the Ab’s tend to go up the hill. Receptor editing allows an Ab to
take large steps through the landscape, landing in a locale where
the affinity might be lower . However, occasionally the
leap will lead to an Ab on the side of a hill where the climbing
region is more promising , reaching the global optimum.
From this locale, point mutations can drive the Ab to the top

Fig. 3. Schematic representation of shape space for Ag-binding sites. Somatic
mutations guide to local optima, while receptor editing introduces diversity,
leading to possibly better candidate receptors.

of the hill . In conclusion, point mutations are good for
exploring local regions, while editing may rescue immune re-
sponses stuck on unsatisfactory local optima.
In addition to somatic hypermutation and receptor editing, a

fraction of newcomer cells from the bone marrow is added to
the lymphocyte pool in order to maintain the diversity of the
population. This may yield the same result as the process of
receptor editing, i.e., a broader search for the global optimum
of the Ag-binding site.
1) Regulation of the Hypermutation Mechanism: A rapid

accumulation of mutations is necessary for a fast maturation
of the immune response, but the majority of the changes lead
to poorer or nonfunctional Ab’s. If a cell that has just picked
up a useful mutation continues to be mutated at the same rate
during the next immune responses, then the accumulation of
deleterious changes may cause the loss of the advantageous
mutation. The selection mechanism may provide a means by
which the regulation of the hypermutation process is made
dependent on receptor affinity. Cells with low-affinity receptors
may be further mutated and, as a rule, die if they do not improve
their clone size or antigenic affinity. In cells with high-affinity
Ab receptors, however, hypermutation may become inactive
[17], [20], generally in a gradual manner.
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Fig. 4. Computational procedure for a standard EA, where represents the
population at each generation, is the vector containing the fitness values for
all members of the population, and is an intermediate population.

III. EVOLUTIONARY ALGORITHMS AND NICHING METHODS

AswillbeseeninSectionVIII,CLONALGhasmanyproperties
incommonwiththewell-knownEAs[24]–[26],andcanbeapplied
tothesamesettings.Fig.4depicts theblockdiagramforastandard
EA.Thealgorithm is used to evolve apopulationof potential can-
didatesolutions,whereasinglememberisgoingtospecifythebest
solution, i.e., a fitness peak, or the population as a whole is taken
as the solution. Selection and variation operators (e.g., crossover,
mutation, inversion) guide the population toward optima.
Nichingmethods extend EAs to domains that require the loca-

tion and maintenance of multiple solutions, such as multimodal
and multiobjective function optimization [26], [27]. Niching
methods can be divided into families or categories, based upon
structure and behavior. To date, two of the most successful
categories of niching methods are fitness sharing and crowding.
Both categories contain methods that are capable of locating and
maintaining multiple solutions within a population, whether or
not these solutions have identical or distinct values (fitnesses).
Fitness sharing, first introduced in [28], is a fitness scaling

mechanism that alters only the fitness assignment stage of anEA.
From a multimodal function optimization perspective, the idea
behind sharing is as follows. If similar individuals are required
to share fitness, then the number of individuals that can reside in
any portion of the fitness landscape is limited by the fitness of
that portion of the landscape. Sharing results in individuals being
allocated to the most promising regions of the fitness landscape.
The number of individuals residing near any peak is proportional
to the height of that peak. Sharing works by derating the fitness
of each individual in the population by an amount related to the
number of similar individuals. Specifically an individual shared
fitness is given by

(1)

where is the sharing function given by (2)

if ,

otherwise
(2)

where is a constant that regulates the shape of the sharing
function (usually set to one) and represents a threshold
of dissimilarity. A sharing evolutionary algorithm can
distinguish its niches by employing a genotypic or phenotypic
distance metric.

IV. CLONAL SELECTION AS AN EVOLUTIONARY PROCESS

The clonal selection functioning of the immune system can
be interpreted as a remarkable microcosm of Charles Darwin’s
theory of evolution, with the three major principles of repertoire
diversity, genetic variation, and natural selection [29]. Reper-
toire diversity is evident in that the immune system produces far
more Ab’s than will be effectively used to bind to an Ag. In fact,
it appears that the majority of Ab’s produced do not play any
active role whatsoever in the immune response. Natural varia-
tion is provided by the variable gene regions responsible for the
production of highly diverse population of Ab’s and selection
occurs such that only Ab’s able to bind successfully to an Ag
will reproduce and be maintained as memory cells.
The similarity between adaptive biological evolution and the

production of Ab’s is even more striking when one considers
that the two central processes involved in the production of
Ab’s, genetic recombination and mutation, are the same ones
responsible for the biological evolution of species. The recombi-
nation and editing of immunoglobulin genes underlies the large
diversity of the Ab population and the mutation of these genes
together with selection serves as a fine-tuning mechanism (see
Section II-B). In sexually reproducing species, for example, re-
combination of gene segments from parent chromosomes, along
with mutation, are involved in providing variation and diversity
of the species. Selection, then, is responsible for purging those
individuals that are less fit to the environment while selecting
the fittest ones [24]. Thus, cumulative blind variation and nat-
ural selection, which over many millions of years resulted in
the emergence of mammalian species, still remain crucial in the
day-by-day ceaseless battle to survival of these species through
their immune systems. It should, however, be noted that recom-
bination of immunoglobulin genes involved in the production
of Ab’s differs somewhat from the recombination of parental
genes in sexual reproduction. In the former, nucleotides can be
inserted and deleted at random from recombined immunoglob-
ulin gene segments and the latter involves the crossing-over of
parental genetic material, generating an offspring that is a ge-
netic mixture of the chromosomes of its parents.
Whereas adaptive biological evolution proceeds by cumula-

tive natural selection among organisms, research on the immune
system has now provided the first clear evidence that ontoge-
netic adaptive changes can be achieved by cumulative blind vari-
ation and selection within organisms [29]. The clonal selection
algorithm (CLONALG), to be described further in the paper,
aims at demonstrating that this cumulative blind variation, based
only upon an affinity proportionate mutation along with a se-
lective pressure, can generate high-quality solutions to complex
problems.

V. SHAPE-SPACE MODEL

The shape-space model aims at quantitatively describing the
interactions among Ag’s and Ab’s (Ag-Ab) [30]. The set of fea-
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tures that characterize a molecule is called its generalized shape.
The Ag-Ab codification (binary or real-valued) determines their
spatial representation and a distancemeasure is used to calculate
the degree of interaction between these molecules. Mathemati-
cally, the generalized shape of a molecule , either an Ab or
an Ag, can be represented by a set of attributes directly asso-
ciated with coordinate axes such that
can be regarded as a point in an -dimensional real-valued shape
space . The precise physical meaning of each
attribute is not relevant to the development of computational
tools. In this paper, we consider binary (or integer) strings to rep-
resent the molecules. Ag’s and Ab’s assume the same length .
The length and cell representation depends upon each problem,
as will be seen in Section VI.

VI. COMPUTATIONAL ASPECTS OF THE CLONAL SELECTION
PRINCIPLE

After discussing the clonal selection theory and the affinity
maturation process, the development and implementation of
CLONALG is straightforward. The main immune aspects taken
into account to develop the algorithm are: 1) maintenance of
a specific memory set; 2) selection and cloning of the most
stimulated Ab’s; 3) death of nonstimulated Ab’s; 4) affinity
maturation; and 5) reselection of the clones proportionally to
their antigenic affinity, generation, andmaintenance of diversity.
CLONALG is composed basically of two repertoires (popula-

tions) of strings: a set of antigensAg and a set of anitbodiesAb.
The set Ab can be decomposed into several subsets according
to the application under study (pattern recognition or optimiza-
tion). Consider the following notation, where boldface expres-
sions (e.g., Ag and Ab) indicate matrices, boldface italic letters
(e.g., ) indicate vectors, corresponds to a coordinate axis
in the shape space, and subindexes within brackets indicate car-
dinality (e.g., ).
1) Ab: Available Ab repertoire that can be decomposed into
several different subsets

.
a) : Memory Ab repertoire

.
b) : Remaining Ab repertoire

.
c) : Ab’s from with the highest affinities

to .
d) : Set of new Ab’s that will replace low-

affinity Ab’s from .
2) : Population of Ag’s to be recognized

.
3) : Vector containing the affinity of all Ab’s in relation
to the antigen .

4) : Population of clones generated from
. After the maturation (hy-

permutation) process, the population is termed .
5) : Candidate from to enter the pool of memory
Ab’s.

In all runs of the algorithm, the stopping criterion was a prede-
fined maximum number of generations .

A. Pattern Recognition
In the pattern recognition case, an explicit Ag population

with cardinality is available for recognition.Without
loss of generality, it is assumed that .
The CLONALG algorithm can be described as follows.
1) Randomly choose an antigen and
present it to all Ab’s in the repertoire

.
2) Determine the vector that contains the affinity of
to all the Ab’s in Ab.

3) Select the highest affinity Ab’s from to compose a
new set of high-affinity Ab’s in relation to .

4) The selected Ab’s will be cloned (reproduced) inde-
pendently and proportionally to their antigenic affinities,
generating a repertoire of clones: the higher the anti-
genic affinity, the higher the number of clones generated
for each of the selected Ab’s.

5) The repertoire is submitted to an affinity maturation
process inversely proportional to the antigenic affinity,
generating a population ofmatured clones: the higher
the affinity, the smaller the mutation rate.

6) Determine the affinity of the matured clones in
relation to antigen .

7) From this set of mature clones , reselect the one with
highest affinity in relation to to be a candi-
date to enter the set of memory antibodies . If the
antigenic affinity of this Ab in relation to is larger
than its respective memory Ab, then will replace this
memory Ab.

8) Finally, replace the lowest affinity Ab’s from , in
relation to , by new individuals in .

Fig. 5 depicts the block diagram for the pattern recognition ver-
sion of CLONALG, including the identification of the eight
steps of the algorithm.
After presenting all the Ag’s from Ag and performing the

eight steps above to all of them, we say a generation has been
completed. Appendix I presents the pseudocode to implement
this version of the CLONALG algorithm.
In our implementation, it was assumed that the highest

affinity Ab’s were sorted in ascending order after Step 3, so
that the number of clones generated for all these selected an-
tibodies was given by

round (3)

where is the total number of clones generated for each of the
Ag’s, is a multiplying factor, is the total number of Ab’s,
and is the operator that rounds its argument toward
the closest integer. Each term of this sum corresponds to the
clone size of each selected Ab, e.g., for and ,
the highest affinity Ab will produce 100 clones, while
the second highest affinity Ab produces 50 clones, and so on.
In order to evaluate the CLONALG capability to perform

learning and memory acquisition, it was applied to a binary
character recognition task. The goal is to demonstrate that a cu-
mulative blind variation together with selection can produce in-
dividuals with increasing affinities (maturation of the immune
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Fig. 5. Computational procedure for CLONALG: pattern recognition version.

response). In this case, it is assumed that the Ag population to be
learned is represented by a set of eight binary characters. These
characters are the same ones originally proposed by Lippmann
[31] in a different context. Each character is represented by a
bitstring of length (the resolution of each picture is
12 10). The Ab repertoire is composed of individ-
uals, where of them belong to the memory set .
The other running parameters were ,
and .
The original characters (Ag’s) are depicted in Fig. 6(a).

Fig. 6(b) illustrates the initial memory set, and Fig. 6(c)–(e)
represents the maturation of the memory set (immune response)
through generations. The affinity measure takes into account
the Hamming distance between an antigen and an
antibody , according to

where if
otherwise (4)

The algorithm converged after 250 cell generations.
Notice that an exact matching is not necessary to obtain a suc-

cessful character recognition. A partial matching is enough in
most applications. Although it is not yet implemented in the cur-
rent version of CLONALG, a partial matching might allow us
to define an affinity threshold for recognition. This threshold
could be decisive to determine the final size and configuration
of the memory set.

B. Optimization
The CLONALG reproduces those individuals with higher

affinities, introducing blind variation and selecting their im-
proved maturated progenies. This strategy suggests that the
algorithm performs a greedy search, where single members will
be optimized locally (exploitation of the surrounding space)
and the newcomers yield a broader exploration of the search
space as proposed by the receptor editing process described in
Section II-B. This characteristic makes the CLONALG very
suitable for solving optimization tasks, particularly multimodal
optimization.

Fig. 6. CLONALG applied to a pattern recognition problem. (a) Patterns to
be learned or input patterns (Ag’s). (b) Initial memory set. (c) Memory set after
50 cell generations. (d) Memory set after 100 cell generations. (e) Memory set
after 200 cell generations.

A few modifications, as described below, have to be made in
CLONALG in order to accomplish optimization tasks.
1) In Step 1, there is no explicit Ag population to be rec-
ognized, but an objective function to be optimized
(maximized or minimized). This way, an Ab affinity cor-
responds to the evaluation of the objective function for a
givenAb, so that each antibody represents an element
of the input space. In addition, as there is no specific Ag
population to be recognized, the whole Ab population
will compose the memory set and, hence, it is no longer
necessary to maintain a separate memory set .

2) In Step 7, Ab’s are selected to compose the set Ab,
instead of selecting the single best individual .

If the optimization process aims at locating multiple optima
within a single population of Ab’s, then two parameters may
assume default values.
1) Assign , i.e., all Ab’s from the population will
be selected for cloning in Step 3.

2) The affinity proportionate cloning is not necessarily ap-
plicable, meaning that the number of clones generated for
each of the Ab’s may be the same, and (3) becomes

round (5)

The second statement has the implication that each Abwill be
viewed locally and have the same clone size as the other ones,
not privileging anyone for their affinity. The antigenic affinity
(corresponding to the value of the objective function) will only
be accounted to determine the hypermutation rate for each Ab,
which is still proportional to their affinity. [Note: In order to
maintain the best Ab’s for each clone during evolution, it is pos-
sible to keep one original (parent) Ab for each clone unmutated
during the maturation phase (Step 5)].
Fig. 7 presents the block diagram of the clonal selection algo-

rithm (CLONALG) when adapted to be applied to optimization
tasks. The pseudocode for this algorithm is described in Ap-
pendix I. Notice that there are slight differences compared to
the previous version, depicted in Fig. 5.
Three function optimization tasks were used to evaluate

the CLONALG potential to perform multimodal search and a
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Fig. 7. Computational procedure for CLONALG: optimization version.

30-city instance of the travelling salesman problem (TSP) was
used to test its efficacy in solving combinatorial optimization
problems.
Consider the cases in which we intend to maximize the fol-

lowing functions:
1) ;
2) ;
3) .

The first two unidimensional functions were used in [26], [28],
and [32] to evaluate niching methods for genetic algorithms.
A discussion relating CLONALG with EAs, including fitness
sharing methods, will be presented in Section VIII. In this sec-
tion, the CLONALG and algorithms will be applied to op-
timize the three functions above and comparisons will be done
based upon the quality of the solutions obtained.
Sharing can be implemented using any selection method,

but the choice may either increase or decrease the stability of
the algorithm [27]. Thus, we chose to implement sharing with
a binary tournament selection. In this case, to promote stability
at the combination of sharing and tournament selection, we
used the continuous updating method, as proposed in [33].
As most applications of genetic algorithms with sharing adopt

and , we also adopted these values in our
simulations. The other parameters employed were
as suggested in [34], and in all cases.
It might be reminded, however, that these parameters were
chosen in an ad hoc fashion, being only adequate choices,
but perhaps not the optimal ones.
In all cases, we employed the Hamming shape space, with

binary strings representing coded real values for the input
variables of the functions . The chosen
bitstring length was , corresponding to a precision
of six decimal places. The mapping from a binary string

into a real number is completed in
two steps.
1) Convert the binary string
from base 2 to base 10:

.
2) Find the corresponding real value for

, where is the upper bound

(a)

(b)

Fig. 8. CLONALG applied to the problem of maximizing functions and
. (a) . (b) .

of the interval in which the variable is defined and is
the lower bound of this interval.

For functions and , variable is defined over the range [0,
1], and, in the case of function , the
variables and are defined over the range

. The affinity measure corresponds to the evalua-
tion of the respective functions after decoding and (if ap-
plicable), as described above. Fig. 8 presents a typical result
produced by CLONALG after 50 generations. Notice that the
solutions (circles) cover all the peaks in both cases. Although
there are stochastic steps in the algorithm, the result presented
in Fig. 8 does not vary much from one trial to another. The peaks
are always determined and the number of nonpeak individuals
is always reduced.
The running parameters adopted were:
1) functions and

and according to (5);
2) function
and according to (5).

Fig. 9 presents the performance of the fitness sharing technique
discussed in Section III, when applied to the same

problems, and Fig. 10 presents the performance of CLONALG
and when applied to the problem of maximizing function

. Section VIII will bring general discussions concerning
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(a)

(b)

Fig. 9. applied to the problem of maximizing functions
and . (a) . (b)

.

the performance of the algorithms in relation to all the problems
tested.
As a last evaluation for the CLONALG algorithm, it was

applied to a 30-city TSP. The TSP is a typical case of a
combinatorial optimization problem and arises in numerous
applications, from very large scale integeration circuit design,
to fast food delivery. In this case, the use of an integer shape
space might be appropriate, where integer-valued vectors of
length , composed of permutations of elements in the set

, represent thepossibletours.Eachcomponent
of the integer vector indexes a city. The inverse of the total length
of each tour gives the affinity measure of the corresponding
vector. Mutation is performed, in this implementation, by
swapping pairs of cities in the Ab’s that represent the tours.
As proposed in the clonal selection theory, no recombination
is performed.
Fig. 11 presents the best solution determined by the

CLONALG algorithm, which corresponds to the global
optimum [35] after 300 generations. The population size is

Ab’s, with (corresponding to a rate of 20% of
newcomers). In this case, low-affinity individuals are allowed
to be replaced after each 20 generations. This scheduling is
supposed to leave some time for the algorithm to achieve local
optima solutions, and then replace the poorer individuals. The

(a)

(b)

Fig. 10. Maximizing function .
(a) CLONALG. (b) .

Fig. 11. Best tour determined by the CLONALG algorithm after 300
generations.

other parameters adopted were and
, according to (3).

VII. SENSITIVITY ANALYSIS

The proposed clonal selection algorithm has deterministic
selection procedures and performs only mutation (there is no
crossover); hence, it is not necessary to define a crossover
probability , which is usual in EAs. However, CLONALG
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has three user-defined parameters that influence mainly: 1)
the convergence speed; 2) the computational complexity (see
Appendix II); and 3) its capability to perform a multimodal
search. These parameters are:

1) (Steps 3 and 7): Number of Ab’s to be selected for
cloning, giving rise to the population ( in
the pattern recognition version);

2) (Step 4): Number of clones generated from
[proportional to according to (3) or (5)];

3) (Step 8): Amount of low-affinity Ab’s to be replaced.

In order to study the effects of setting these parameters when
running CLONALG, consider the problem of maximizing func-
tion as described in Section VI-B. The Ab
population will be assumed to be of fixed-size (twice
the number of peaks).

A. Sensitivity in Relation to Parameter

To evaluate the CLONALG sensitivity in relation to , we
fixed , resulting in according to (5) and

. Parameter takes the values .
For , if the algorithm presents difficulties in locating
all the optima for the given function, then it will be assumed
to have converged when at least one of the five peaks is located.
The number of generations necessary for convergence was
evaluated, as described in Fig. 12(a). The results presented are
themaximum,minimum, andmean obtained over ten runs of the
algorithm for each value of . It can be inferred from this pic-
ture that the parameter does not strongly influence the number
of generations required to locate one maximum of the function.
On the other side, has a strong influence on the size of the
population , as described by (5), and larger values of
imply a higher computational cost to run the algorithm (see Ap-
pendix II, Table I).
Fig. 12(b) shows that the average population affinity rises as
increases. This behavior was expected in this particular case

because the higher the value of , the larger the number of Ab’s
that will be located at a maximum of the function.

B. Sensitivity in Relation to Parameter

In order to study the CLONALG sensitivity in relation to
, was set to (default for multimodal op-

timization), , and assumed the following values:
. In this case, the algorithm is

supposed to have converged after locating all five peaks of the
function and the average fitness of the whole Ab population

was larger than , where the maximum value is
. Fig. 13 shows the tradeoff between and the number

of generations necessary for convergence . The results
presented are the maximum, minimum, and mean obtained over
ten runs of the algorithm for each value of .
It can be seen from the results presented in Fig. 13 that the

higher (or ), the faster the convergence, in terms of number
of generations. Nevertheless, the computational time per gener-
ation increases linearly with , as discussed in Appendix II.

(a)

(b)

Fig. 12. CLONALG sensitivity in relation to . (a) Number of generations,
, to converge (locate at least one maximum). (b) Average affinity of the

population after convergence.

TABLE I
COMPUTATIONAL COMPLEXITY OF THE

ALGORITHM

C. Sensitivity in Relation to Parameter
The number of low-affinity Ab’s to be replaced (Step 8

of the algorithm) is of extreme importance for the introduc-
tion and maintenance of diversity in the population and then
for the CLONALG potentiality of exploring new regions of the
affinity landscape, as discussed in Section II-B and illustrated
in Fig. 3. This was verified through the generation of an ini-
tial population composed of identical Ab’s,

. The initial affinity of all these Ab’s is
and the default value for multimodal op-

timization is . The algorithm was run for
and , corresponding to 0%, 10%, and 20% of the popula-
tion being randomly replaced at each generation. Fig. 14 shows
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Fig. 13. CLONALG sensitivity in relation to .

the CLONALG capability of locating all optima for and
. It can be noticed that for values of , the algorithm

can locate all the peaks of the function to be maximized. Nev-
ertheless, it is important to note that very high values for this
parameter may result in a random search through the affinity
landscape, being suggested values ranging from 5% to 20% of
(size of the Ab repertoire). It is also interesting to observe

that, even for , CLONALGwas capable of locating three
out of the five peaks of .

VIII. DISCUSSION

A. Theoretical Aspects

CLONALG, as proposed in this paper, represents a computa-
tional implementation of the clonal selection and affinity matu-
ration principles responsible for describing the behavior of the
B cells during an adaptive immune response (see Section II).
In both implementations, Figs. 5 and 7, it is assumed the exis-
tence of an Ab repertoire to be exposed to an antigenic
stimulus (which can be caused by an explicit population
to be recognized or a value of an objective function to
be optimized) and those higher affinity Ab’s will be selected
to generate a population of clones. During proliferation, a few
Ab’s will suffer somatic mutation proportional to their antigenic
affinities and the clones with highest affinity will be selected to
compose a memory set. Low-affinity Ab’s are replaced, simu-
lating the process of receptor editing.
By comparing CLONALG (Figs. 5 and 7) with the EAs re-

viewed in Section III (Fig. 4), it is possible to note that the main
steps composing the EAs are embodied in CLONALG, allowing
us to characterize it as an evolutionary-like algorithm. However,
while EAs use a vocabulary borrowed from natural genetics
and inspired by Darwinian evolution, the proposed CLONALG
makes use of the shape-space formalism, along with immuno-
logical terminology to describe Ag-Ab interactions and cellular
evolution, as discussed in Section IV. The CLONALG performs
its search through the mechanisms of somatic mutation and re-
ceptor editing, balancing the exploitation of the best solutions
with the exploration of the search space. Essentially, its en-
coding scheme is not different from that of EAs.

(a)

(b)

Fig. 14. CLONALG sensitivity in relation to . (a) . (b) .

The proposed clonal selection algorithm can also be char-
acterized as a cooperative and competitive approach, where
individual Ab’s are competing for antigenic recognition (or
optimization), but the whole population (at least the specific
memory set) will cooperate as an ensemble of individuals to
present the final solution.
Similarly to CLONALG, evolution strategies (ESs) [36], [37]

also employ self-adapting variation mechanisms. ESs consider
the mutation parameter as the main variation operator. They
often use Gaussian mutations and deterministic rules to control
the step size [38]. For the CLONALG algorithm, the mutation
rate is proportional to the individuals’ affinities and may be im-
plemented based on rules like the one described in (6) and illus-
trated in Fig. 15

(6)

where is the step size, controls its decay, and is the anti-
genic affinity. In this function, the sizes of the antigenic affinity
and mutation are normalized over the interval [0, 1].

B. Empirical Aspects
The results presented in Section VI allow us to infer several

important properties of the proposed algorithm.
First and most important, while adaptive biological evolution

occurs through natural selection among organisms (or among
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Fig. 15. Tradeoff between the mutation rate and the antigenic affinity .

organisms and selfish genes [39]), research in immunology has
now provided the first clear evidence that ontogenetic adaptive
changes can be achieved through variation and selection within
organisms (see discussion in Section IV).
By comparing the performance of the proposed CLONALG

algorithm for multimodal optimization with the fitness sharing
method presented briefly in Section III, we note that
the number of nonpeak individuals located by the CLONALG
algorithm is much smaller for functions and (see
Fig. 8) than those determined by the (see Fig. 9). In the
case of function , where the separation among peaks
is nonuniform, the fitness sharing overlooked peaks distributed
with less uniformity and privileged the highest ones, as illus-
trated in Fig. 10(b), whilst CLONALG located a higher number
of local optima, including the global maximum of the function
[see Fig. 10(a)].
While has to set parameter , which represents

a difficult task that might depend upon the number of peaks
(usually unknown a priori) and recombination probabilities

in most cases, CLONALG has parameters
, and (or ) to be defined ( is usually equal to

for multimodal optimization). The sensitivity analysis of the
algorithm (see Section VII) demonstrated that is crucial to
the algorithms’ capability of locating a large number of local
optima, influences the CLONALG potential to explore new
areas of the affinity landscape and is related strongly to the
convergence speed and computational time required to run
the algorithm. As a final aspect of the
comparison, the has an associated computational cost
of order (every population member is compared to all
others), while CLONALG has an associated computational
cost of order for multimodal function optimization,
as detailed in Appendix II. Each Ab optimized by CLONALG
performs a sort of hill climbing from its initial position, with
the possibility of moving from a lower to a higher peak, de-
pending upon its mutation rate and the receptor editing phase.
This way, unlike fitness sharing, the presence of individuals
around multiple peaks is not imposed explicitly, being instead
an intrinsic aspect of the mechanisms of clonal selection and
affinity maturation.

IX. CONCLUDING REMARKS

In this paper, we presented a general-purpose algorithm in-
spired by the clonal selection principle and affinity maturation
process, both essential to the adaptive immune response. Two
versions of the algorithm, named CLONALG, were derived and
subject to a detailed study, including sensitivity analysis and es-
timation of the computational complexity.
The first version was designed to perform machine-learning

and pattern-recognition tasks, where an explicit Ag population,
representing a set of input patterns, was available for recogni-
tion. Due to its potential to perform parallel search, the algo-
rithm was then adapted to solve optimization problems, empha-
sizing the multimodal case. In this second version, any Ab was
considered a candidate for the optimal solution and the affinity
to an Ag was replaced by the corresponding value provided by
the function being optimized.
No distinction between the cell and its receptor is made.

Thus, the editing and cell replacement processes are equiva-
lent, leading to the introduction of diversity and to a broader
exploration of the affinity landscape. Though not considered
in the present implementation, several heuristics, e.g., specific
types of local search, may be inserted in order to improve the
CLONALG performance when applied to particular tasks, such
as the TSP exemplified in Section VI.B.
By comparing the proposed algorithm with the standard EA,

we note that the CLONALG can reach a diverse set of local
optima solutions, while the EA tends to bias the whole popu-
lation of individuals toward the best candidate solution. Essen-
tially, their encoding schemes and evaluation functions are sim-
ilar, but their evolutionary search processes differ from the view-
point of inspiration, vocabulary, and sequence of steps. How-
ever, CLONALG still embodies the main steps of any EA.
Empirical comparisons with niching strategies [26], [27],

more specifically, with a genetic algorithm with fitness sharing
, demonstrated that CLONALG is capable of locating a

larger number of local optima solutions than . It is also
remarkable to note that the CLONALG version for optimization
implicitly accounts for the search of multiple solutions. Thus,
its computational cost is reduced when compared to an
that has to explicitly evaluate the degree of similarity among
the individuals of the population.
Another important aspect of our model, when compared with

the standard EA, is the fact that the CLONALG takes into ac-
count the cell affinity, corresponding to the fitness of the individ-
uals, in order to define the proliferation and mutation rates to be
applied to each member of the population. ESs [36], [37] and
evolutionary programming techniques [40], [41] also employ
self-adapting parameters, but based on a mathematical frame-
work that is distinct from the biologically inspired mechanism
used by CLONALG.

APPENDIX I

A. CLONALG—Pseudocode for the Pattern Recognition
Version

See Section VI-A for a complete description of the algorithm.
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Input:
Output:

,
,

;
;
;
;

;
;
;

;

;
;
;

B. CLONALG—Pseudocode for the Optimization Version
See Section VI-B for a complete description of the algorithm.

Input:
Output:

,
;

;
;
;

;
;
;
;

;
;

;

Note: Function decode is supposed to decode and eval-
uate for these decoded values.

APPENDIX II
COMPLEXITY ANALYSIS OF THE ALGORITHM

“Analysis of an algorithm” refers to the process of deriving
estimates for the time and space needed to execute the algo-
rithm. “Complexity of an algorithm” refers to the amount of
time and space required to execute it in the worst case [42], [43].
Determining the performance of a computer program is a diffi-
cult task and depends on a number of factors such as the com-
puter being used, the way the data are represented, and how and
with which programming language the code is implemented.
Here, we will present a general evaluation of the complexity
of the CLONALG algorithm, taking into account the computa-
tional cost per generation and its memory (space) requirements,
for the pattern recognition and optimization versions (see Sec-
tions VI-A and B).
We can measure the time required by an algorithm by

counting the maximum number of instructions executed, which

is proportional to the maximum number of times each loop is
executed. Regardless the affinity function, we use parameters
that characterize the computations performed, like the dimen-
sion of the available Ab repertoire , the total number of
clones , the number of Ag’s to be recognized, and the
number of selected Ab’s for reproduction.
The proposed CLONALG algorithm has three main pro-

cessing steps:
1) determining the affinity of the Ab’s (Steps 2 and 6);
2) selecting (and reselecting) the highest affinity Ab’s
(Steps 3 and 7);

3) hypermutating the population (Step 5).
The usual way of selecting individuals from a population is

by sorting the affinity (fitness) vector and then extracting the
first elements of the sorted vector. According to [44], this can

be performed in time. This way, the computational time
required in Steps 3 and 7, selection and reselection phases, is

and in the worst cases, where and ,
respectively. Mutating the clones demands a computational
time of the order [26]. By summing up the compu-
tational time required for each of these steps, it is possible to
determine the total computational time of the algorithm. In the
pattern recognition case, these steps have to be performed for
each of the Ag’s; hence, the computational time of the whole
process comes preceded by a multiplying factor of . On the
other hand, if the algorithm is to be applied to a multimodal op-
timization problems with , then the selection processes
can be suppressed from the algorithm, reducing its computa-
tional time to .
In all cases (pattern recognition and optimization),

the required memory to run the algorithm is propor-
tional to the dimension of vector , plus the number

of generated clones, plus the dimension of matrices
, and

.
The computational complexity of the CLONALG algorithm

is summarized in Table I.
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